Тестовое задание для диагностического тестирования по дисциплине:

Дискретная математика

Квалификация	Бакалавр
выпускника	
Направление	01.03.02
подготовки	
	Прикладная математика и информатика
Направленность	Технологии программирования и анализ данных
(профиль)	2 0.22.02.02.02.02.02.02.02.02.02.02.02.02
— Форма обучения	очная
	О Пил
Кафедра-	Прикладная математика
разработчик	
Выпускающая	
кафедра	Прикладная математика

Прове ряема	Задание	Варианты ответов	Тип сложност
я компе тенция			вопроса
ОПК- 1.1.	Выберите один правильный вариант ответа. Пересечением множеств A и B называется	1. $A \cap B = \{x : x \in A \ u \ x \notin B\}$ 2. $A \cap B = \{x : x \in A \ u \ x \in B\}$ 3. $A \cap B = \{x : x \in A \ u \ x \in B\}$ 4. $A \cap B = \{x : x \notin A \ u \ x \in B\}$	Низкий
ОПК- 1.1.	Выберите один правильный вариант ответа. Диаграмма Венна, изображающая объединение множеств А и В имеет вид	2. 3. 4. B U B U B U B U B U B U B U B U B U B	Низкий
ОПК- 1.1.	Выберите все правильные варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых Ложными высказываниями являются:	 «Студенты специальности «Прикладная математика» изучают дисциплину «Лечебное дело»» "Любой человек имеет отца" x²-7x+2=0 "Который час?" "Обь впадает в Средиземное море" "Северная страна" x²-7x+2=0 при х=2 	Низкий

1.1. Вариант ответа. Пусть М — конечное множество ня л элементов. Число элементов, ня которых состоит аптебра подможеть Р(М), равно Подможеть Р(М), разно Подможе	ОПК-	Выберите один правильный	1. n^2	Низкий
ИЗ Я ЭЗИМЕНТОВ. ЧІКЛЮ ЭЛЕМЕНТОВ, НІ КОТОРЫ СОСТОИТ АЛТЕВНОВ НЕ ВИВОВНО СОСТОИТ АЛТЕВНОВ НЕ ВИВОВНО СОСТОИТ АЛТЕВНОВ НЕ ВИВОВНО СОСТОИТ В ВЫБЕРИТЕ ВСЕ ПРАВИЛЬНЫХ ВАРИЯНТОВ В ПОРЯДКЕ ВОЗРАСТАНИЯ БЕЗ ПРОБЕЛОВ И ЗАВИЗЕТЬЯ ОПК- 1.1. Среди представленных функциями являются ОПК- 1.1. Выберите один правильный вариант ответа. В ответ запишите помера правильных варианты ответа. В ответ запишите помера правильных вариант ответа. В ответ запишите помера правильных вариант ответа. В ответ запишите помера правильный да добом міожителе пи одпа премененая не содержится вместе со своим отрицанием 4. в любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом содержится вместе со своим отрицанием 4. в любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом нет одшаковых сомпожителей Средний их отрицания за любом спатаемом за любом сп	1.1.		2. n	
ИЗ КОТОРЫХ СОСТОИТ АЛГЕФРА ПОДМИОЖЕСТВ РАМУ, равно		Пусть M — конечное множество	3. 2 ⁿ	
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите помера правильных варианты ответа. В ответ запишите ответа. В ответ запишите ответа. В ответ запишите помера правильный сДНФ является 1. xyy Ф x ⊕ y 4. xy ⊕ x ⊆ ⊕ y 5. x ⊕ y ⊕ 1 ОПК- 1.1. Выберите один правильный сДНФ является 1. xyy xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz xyz xyz xyz xyz xyz xyz Средний СДНФ является 2. xye xyz		из n элементов. Число элементов,	4. 2 <i>n</i>	
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите помера правильных вариантов в порядке возрастания без пробелов и запятых Нелинейными функциями являются 1. xy ≠ ∞ y 3. xy ⊕ x ⊕ y 4. xy ⊕ x ⊆ ⊕ y 5. x ⊕ y ⊕ 1 Средний варианты вариант ответа. Среди представленных функций СДНФ является 1. xy ⊕ x z ⊕ y ∈ x √y ≥ xy ≥ x		из которых состоит алгебра		
1.1. вариниты ответа. В ответ запишите помера правильных вариантов в порядке возрастания без пробелов и запятых Нелинейными функциями являются 1.		подмножеств $P(M)$, равно		
Запишите номера правильных вариантов в порядке возрастания без пробелов и запятых 3. xy ⊕ x ⊕ y 4. xy ⊕ xz ⊕ yz 5. x ⊕ y ⊕ 1 ОПК- 1.1. Выберите один правильный СДНФ является 1. xy √ xyz ∨ xyz ∨ xyz √ xyz Средний СДНФ является 2. xyz √ xyz ∨ xyz ∨ xyz √ xyz Средний СДНФ является 2. xyz √ xyz ∨ xyz √ xy			1. $xyz \oplus x$	Низкий
Вариантов в возрастания без пробелов и запятых Нелинейными функциями являются 1.	1.1.	_	2. $x \oplus y$	
возрастания без пробелов и запятых Нелиписйными функциями являются 4. xy ⊕ xz ⊕ yz 5. x ⊕ y ⊕ 1 ОПК- 1.1. Выберите один правильный СДНФ является 1. xy ∨ xyz ∨ xyz ∨ xyz Средний СДНФ является 2. xyz ∨ xyz ∨ xyz ∨ xyz Средний СДНФ является 2. xyz ∨ xyz ∨ xyz ∨ xyz Средний СДНФ является 4. xy ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ 1 Средний СДНФ является 2. xyz ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ 1 Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xyz ∨ xyz ∨ xyz ∨ xyz Средний Аху ⊕ y ⊕ x ∨ xyz ∨ xy			3. $xy \oplus x \oplus y$	
ОПК- 1.1. Выберите один правильный вариант ответа. Среди представленных функций СДНФ является 1.			4. $xy \oplus xz \oplus yz$	
Нелинейными функциями являются П. $\bar{x}y \lor \bar{x}yz \lor xy\bar{z} \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor xy\bar{z} \lor x\bar{y}z \rangle$ Средний СДНФ является П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor xy\bar{z} \lor x\bar{y}z \rangle$ Средний СДНФ является П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor xy\bar{z} \lor x\bar{y}z \rangle$ Средний СДНФ является П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний СДНФ является П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor xyz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний П. $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний Совраненной формой называется $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний Соврениенной формой называется $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний Совраненной формой называется $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний Совраненной $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \lor x\bar{y}z \lor x\bar{y}z \rangle$ Средний $\bar{x}y \lor x\bar{y}z \lor x\bar{y}z$,	
ОПК- 1.1. Выберите один вариант ответа. Среди представленных функций СДНФ является правильный функций среди представленных функций СДНФ является 1. ∑у ∨ ∑у ∨ ху ∨ ху ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ 4. ∑у ⊂ Ху ∨ ху ∨ ху ∑ ∨ ху ∑ Средний ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запитых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: 1. В ней нет одинаковых слагаемых 2. В любом множителе нет одинаковых слагаемых 3. В любом множителе ни одна переменная не содержителя вместе со своим отрицанием 4. В любом слагаемом присутствуют все переменные или их отрицания 5. В любом слагаемом присутствуют все переменные 4. В любом слагаемом 4. В любом слагаемых 4. В любом слагаемом 4. В любом слагаемо				
ОПК- 1.1. Выберите один правильный вариант ответа. Среди представленных функций СДНФ является 1. $\bar{x}y \vee \bar{x}yz \vee x\bar{y}z \vee x\bar{y}z \vee x\bar{y}z$ Средний вариант ответа. Среди представленных функций СДНФ является 2. $\bar{x}yz \vee \bar{x}yz \vee x\bar{y}z \vee x\bar{y}z$ Средний СДНФ является ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера правильных варианты ответа. В ответ запишите номера правильные варианты ответа. В ответ запишите номера правильные варианты ответа. В ответ запишите номера правильных слагаемых 3. в любом множителе нет одинаковых слагаемых 3. в любом множителе нет одинаковых слагаемых 3. в любом множителе нет одинаковых слагаемых 3. в любом множителе не одна правильный присутствуют все переменные или их отрицания 5. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом нет одинаковых сомножителей 1. $\bar{x}yz \vee x\bar{y}z \vee x\bar$				
1.1. Вариант ответа. Среди представленных функций СДНФ является 2.	ОПК		1 =	Срешций
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Среднии
СДНФ является	1.1.	, <u>-</u>	1	
ОПК- 1.1. Выберите все правильных варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых 1. {√, } 2. { } ОПК- 1.1. Выберите все правильных варианты ответа. В ответ запишите номера правильные вариантов в порядке возрастания без пробелов и запятых 1. в ней нет одинаковых слагаемых запишите номера правильных вариантов в порядке возрастания без пробелов и запятых 2. в любом множителе нет одинаковых слагаемых за влюбом слагаемых за влюбом слагаемых за влюбом слагаемом присутствуют все переменные или их отрицания 3. в любом множителе ни одна переменная не содержится вместе со своим отрицанием 4. в любом слагаемом присутствуют все переменные или их отрицания ОПК- 1.1. Выберите один правильный вариант ответа. СДНФ для функции f(x, y, z) = (0;1;0;1;0;0;1;0) имеет вид: 1. x̄yz ∨ xyz ∨ xyz ∨ xyz Средний 2. x̄y ∨ xyz ∨ xyz ∨ xyz ОПК- 1.1. Выберите один правильный вариант ответа. Минимальной ДНФ для функции f(x; y; z) = xyz ∨ x				
1.1. варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых		одит изметел	4. $\overline{x}y\overline{z} \vee \overline{x}yz \vee xy\overline{z} \vee x\overline{y}z$	
1.1. варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых Функционально полными системами функций являются: ОПК- 1.1. выберите все правильные варианты ответа. В ответ запишите номера правильные возрастания без пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. выей нет одинаковых слагаемых 2. в любом множителе нет одинаковых слагаемых 3. в любом множителе ни одна пременная не содержится вместе со своим отрицанием 4. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом нет одинаковых сомножителей 1. $\overline{x}yz \vee xy\overline{y}z \vee xyy$			1. {∨, ¯}	Средний
вариантов возрастания без пробелов и запятых Функционально полными системами функций являются: 3. $\{\land, \Rightarrow\}$ 4. $\{\land, \rightarrow\}$ 5. $\{\land, \Rightarrow\}$ 4. $\{\land, \rightarrow\}$ 5. $\{\land, \Rightarrow\}$ Средний ОПК-1.1. Выберите все правильные варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: 1. в ней нет одинаковых слагаемых Средний переменная не содержителе нет одинаковых слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом нет одинаковых сомножителей 1. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z}$ Средний 1. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z}$ Средний 1. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 1. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 1. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 2. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 2. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 3. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 3. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 4. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 3. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 3. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 4. $\overline{xyz} \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ Средний 4. $\overline{xyz} \lor xy\overline{z} \lor xy$	1.1.	-		
Возрастания без пробелов и запятых			2. { }	
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера правильные возрастания без пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: 1. в ней нет одинаковых слагаемых запишите номера правильных одинаковых слагаемых за любом множителе нет одинаковых слагаемых за в любом множителе нет одинаковых слагаемых за в любом множителе нет одинаковых слагаемых за в любом слагаемом пременная не содержится вместе со своим отрицанием 4. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом нет одинаковых сомножителей ОПК- 1.1. Выберите один правильный (к, у, z) = (0,1;0;1;0;0;1;0) имеет вид: 1.			3. {∧,⊕}	
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера пробелов и запятых Совершенной коньюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный вариант ответа. СДНФ для функции $f(x, y, z) = (0;1;0;1;0;0;1;0)$ имеет вариант ответа. Минимальной ДНФ для функции $f(x; y; z) = \frac{1}{xyz} \lor xy\overline{yz} \lor xyz \lor xyz \lor xyz}$ ОПК- 1.1. Выберите один правильный вариант ответа. Минимальной ДНФ для функции $f(x; y; z) = \frac{1}{xyz} \lor xy\overline{yz} \lor xyz \lor xyz \lor xyz}$ Азуг $xyz \lor xyz \lor xyz \lor xyz \lor xyz$ ОПК- 1.1. ОТК- 1.1. О				
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный $f(x, y, z) = (0;1;0;1;0;0;1;0)$ имеет загуу $xyyz = xyyz = xyy$			` '	
ОПК- 1.1. Выберите все правильные варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых 1. в ней нет одинаковых слагаемых Средний слагаемых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: 4. в любом множителе ни одна пременная не содержится вместе со своим отрицанием вместе со своим отрицанием ОПК- 1.1. Выберите один правильный рункции $f(x, y, z) = (0,1;0;1;0;0;1;0)$ имеет вид: 1. $\overline{x}yz \vee xy\overline{z} \vee xy\overline{z} \vee xy\overline{z}$ Средний средни средний средний средни средни средний средний средний средний средний средний		1	5. {∧,⊕,1}	
1.1. варианты ответа. В ответ запишите номера правильных вариантов в порядке возрастания без пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: 5. в любом слагаемом присутствуют все переменные или их отрицания 5. в любом слагаемом нет одинаковых сомножителей 0ПК- 1.1. вариант ответа. СДНФ для функции $f(x,y,z) = (0;1;0;0;0;1;0)$ имеет вид: 0ПК- 1.1. вариант ответа. Минимальной ДНФ для функции $f(x;y;z) = \frac{1}{xyz} \lor xy\overline{yz} \lor xyz \lor xy\overline{z}$ 4. $xy\overline{z} \lor xyz \lor xy\overline{z}$ Средний $f(x;y;z) = \frac{1}{xyz} \lor xy\overline{z} \lor xyz \lor xy\overline{z}$ 4. $yz \lor xy\overline{z}$ 7. Средний $yz \lor xy\overline{z} \lor xyz \lor xyz$	ОПК-		1. в ней нет одинаковых	Средний
вариантов возрастания без пробелов и запятых Совершенной конъюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: выберите один правильный $f(x,y,z) = (0,1;0;1;0;0;1;0)$ имеет вид: 1. $\overline{x}yz \vee x\overline{yz} \vee x\overline{yz} \times x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,y,z) = \frac{1}{\overline{x}yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,z) \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,z) \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,z) \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,z) \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$ Средний $f(x,z) \vee x\overline{yz} \vee x\overline{yz} \vee x\overline{yz}$	1.1.		слагаемых	-
Возрастания без пробелов и запятых Переменная не содержится Выберите один правильный Перементов и дини их отрицания Перементов или их отрицание Перементов или их отрицания Перементов или их отрицание Перементов или их отрицания Перементов или их отрицание		запишите номера правильных	2. в любом множителе нет	
Переменная не содержится вместе со своим отрицанием нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный рункции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный $f(x,y,z) = \frac{1}{xyz} \times xyz \times $		вариантов в порядке	одинаковых слагаемых	
Совершенной коньюнктивной нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный равильный $f(x,y,z) = (0,1;0;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный $f(x,y,z) = (0,1;0;1;0;0;1;0)$ имеет вид: ОПК- ОПК		возрастания без пробелов и	3. в любом множителе ни одна	
Нормальной формой называется КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный рациния одинаковых сомножителей Пи их отрицания одинаковых сомножителей 1. $\overline{x}yz \lor xy\overline{z} \lor x\overline{y}z$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$				
КНФ, обладающая следующими свойствами: ОПК- 1.1. Выберите один правильный ранинт ответа. СДНФ для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет для функции дл		-	-	
Свойствами: ОПК- 1.1. Выберите один правильный вариант ответа. СДНФ для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- 1.1. Выберите один правильный $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;0;1;0)$ имеет $f(x,y,z) = (0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1;0;1$				
5. в любом слагаемом нет одинаковых сомножителей ОПК-1.1. Выберите один правильный вариант ответа. СДНФ для функции f(x, y, z) = (0;1;0;1;0;0;1;0) имеет вид: 1.			1	
ОПК- 1.1. Выберите один правильный 1. $\overline{x}yz \lor xy\overline{z} \lor x\overline{y}z$ Средний 1.1. $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$ Средний $\overline{x}yz \lor xyz \lor xy\overline{z} \lor xyz \lor xy\overline{z}$ 4. $\overline{x}yz \lor xyz \lor xyz \lor xyz$ Средний 1.1. $\overline{x}yz \lor xy\overline{z} \lor xyz \lor xyz \lor xyz$ Средний $\overline{x}yz \lor xyz \lor x$		своиствами:	<u> </u>	
ОПК-1.1. Выберите один правильный вариант ответа. СДНФ для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: 1. $\overline{x}yz \lor xy\overline{z} \lor x\overline{y}z$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$ Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z} \lor xy\overline{z}$ ОПК-1.1. Установите соответствие между законами и формулами. В ответ запишите трехзначное число без пробелов и запятых. Средний $\overline{x}yz \lor xy\overline{z} \lor xy\overline{z}$				
1.1. вариант ответа. СДНФ для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: 2. $\overline{xyz} \vee \overline{xyz} \vee xy\overline{z}$ 3. $\overline{xyz} \vee \overline{xyz} \vee xy\overline{z}$ 4. $\overline{xyz} \vee \overline{xyz} \vee xy\overline{z}$ 4. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z}$ 3. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 2. $\overline{xy} \vee xy\overline{z}$ 3. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 3. $\overline{xyz} \vee xy\overline{z}$ 3. $\overline{xyz} \vee xy\overline{z}$ 4. $\overline{yz} \vee xy\overline{z}$ 4. $\overline{yz} \vee xy\overline{z}$ 4. $\overline{yz} \vee xy\overline{z}$ 4. $\overline{yz} \vee xy\overline{z}$ 5. $\overline{xyz} \vee xy\overline{z}$ 4. $\overline{yz} \vee xy\overline{z}$ 5. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 6. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 5. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 5. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 6. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z} \vee xy\overline{z}$ 7. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z} \vee xy\overline{z}$ 7. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z} \vee xy\overline{z}$ 8. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 8. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z} \vee xy\overline{z}$ 8. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 9. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 8. $\overline{xyz} \vee xy\overline{z} \vee xy\overline{z}$ 	ОПК-	Выберите опин правилинги		Спепций
СДНФ для функции $f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- Выберите один правильный 1. $\overline{x}yz \vee x\overline{y}z \vee x\overline{y}z \vee xyz$ Средний 1.1. Вариант ответа. 2. $\overline{x}y \vee xyz \vee xyz \vee xyz$ Средний $f(x;y;z) = \overline{x}yz \vee x\overline{y}z \vee x\overline{y}z \vee xyz$ 4. $yz \vee x\overline{y}z \vee x\overline{y}z \vee xyz$ ОПК- ОПК- ОПК- Установите соответствие между законами и формулами. В ответ запишите трехзначное число без пробелов и запятых.				Среднии
$f(x,y,z) = (0;1;0;1;0;0;1;0)$ имеет вид: ОПК- Выберите один правильный 1. $\overline{x}yz \vee x\overline{yz} \vee x\overline{yz} \vee xyz$ Средний 1.1. Вариант ответа.	1.1.	_	1	
вид: ОПК- Выберите один правильный 1. $\overline{x}yz \lor x\overline{yz} \lor x\overline{yz} \lor xyz$ Средний 1.1. вариант ответа. Минимальной ДНФ для функции $f(x; y; z) = \overline{x}yz \lor x\overline{yz} \lor x\overline{yz} \lor xyz$ является 3. $\overline{x}y\overline{z} \lor \overline{x}yz$ 4. $yz \lor x\overline{y}$ ОПК- Установите соответствие между законами и формулами. В 1.1. Средний ответ запишите трехзначное число без пробелов и запятых.		1		
ОПК- Выберите один правильный 1. $\bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \lor xyz$ Средний 1.1. 1.1. вариант ответа. Минимальной ДНФ для функции $f(x; y; z) = \bar{x}yz \lor x\bar{y}z \lor x\bar{y}z \lor xyz$ является 3. $\bar{x}y\bar{z} \lor \bar{x}yz$ 4. $yz \lor x\bar{y}$ ОПК- Установите соответствие между законами и формулами. В 1.1. Средний ответ запишите трехзначное число без пробелов и запятых.		,	$4. \ \overline{x}y\overline{z} \vee \overline{x}yz$	
1.1. вариант ответа. Минимальной ДНФ для функции $f(x; y; z) = \frac{\overline{x}yz \vee x\overline{y}z \vee x\overline{y}z \vee xyz}{\overline{x}yz \vee x\overline{y}z \vee xyz}$ 4. $yz \vee x\overline{y}$ ОПК- 1.1. Установите соответствие между законами и формулами. В ответ запишите трехзначное число без пробелов и запятых.	ОПК-		1. $\overline{x}yz \vee x\overline{y}\overline{z} \vee x\overline{y}z \vee xyz$	Срелний
Минимальной ДНФ для функции $f(x; y; z) = \frac{1}{xyz \vee xyz} \vee xyz \vee xyz \times xyz $				- L -
$f(x; y; z) = \frac{f(x; y; z)}{xyz \lor xy\overline{z} \lor xy\overline{z} \lor xyz}$ ОПК- 1.1.		_	1	
$\overline{xyz} \lor x\overline{yz} \lor x\overline{yz} \lor xyz$ является 4. $yz \lor xy$ ОПК- 1.1. Ответ запишите трехзначное число без пробелов и запятых.			1	
ОПК- Установите соответствие между законами и формулами. В Средний 1.1. ответ запишите трехзначное число без пробелов и запятых.			$4. yz \vee xy$	
1.1. ответ запишите трехзначное число без пробелов и запятых.	ОПК-		законами и формулами. В	Средний
Закон Формула	1.1.	=		
	Закон Формула			

	А. Закон де Моргана	1. a	$(a \lor b) = a$	
	Б. Закон	2. (a	$(\land b) \lor c = (a \lor c) \land (b \lor c)$	
	дистрибутивности			
	В. Закон поглощения	3. a	$\wedge b = b \wedge a$	
			$\sqrt{\overline{b}} = \overline{a \wedge b}$	
		1	$(a \land b) \lor c = a \land (b \lor c)$	
		(**		
ОПК-	Выберите один правил	ьный	1. эквивалентностью	Средний
1.1.	вариант ответа.		2. дизъюнкцией	-
	Высказывание, которое лож	НО	3. импликацией	
	тогда и только тогда, когда		4. конъюнкцией	
	высказывание A — истинно,	a		
	высказывание B – ложно,			
	называется			
ОПК-	Выберите один правил	ьный	1. монотонной	Средний
1.1.	вариант ответа.		2. самодвойственной	
	Функция, для любого вектор		3. сохраняющей 0	
	$(\alpha_1, \alpha_2,, \alpha_n)$ удовлетворяющ	ая	4. линейной	
	условию			
	$f(\alpha_1, \alpha_2,, \alpha_n) = \overline{f(\overline{\alpha_1}, \overline{\alpha_2},, \overline{\alpha_n})}$			
	называется			
ОПК-	Выберите все правил	ьные	1. монотонных функций	Средний
1.1.		ответ	2. нелинейных функций	1 7
	запишите номера правил	ьных	3. самодвойственных функций	
		рядке	4. функций, не сохраняющих 0	
	возрастания без пробел	ов и	5. немонотонных функций	
	запятых		6. линейных функций	
	Замкнутыми классами являн	отся		
	классы			
ОПК-			операциями над множествами	Средний
1.1.	и определениями. В ответ з пробелов и запятых.	запиш	ите четырехзначное число без	
	Операция	Опре	деление	
	A. $A \cap B$	· ·	$x \in A \ u \ x \notin B$	
	Б. <i>A</i> \ <i>B</i>	<u> </u>		
		<u>'</u>	$x \in A \ u \ x \in B\}$	
	B. \overline{A}	3. { <i>x</i>	$x \in A$ или $x \in B$ }	
	$C. A \cup B$	4. { <i>x</i>	$\{x \in U \ u \ x \notin A\}$	
		5. { <i>x</i>	$x \notin A \ u \ x \in B$	
ОПК-	Выберите один правил	ьный	1. (0; 1; 0; 0; 1; 0; 1; 0)	Высокий
1.1.	вариант ответа.		2. (1 0; 1; 0; 1; 1; 0; 0)	
	Характеристическая функци		3. (0; 0; 0; 0; 1; 1; 1; 0)	
	множества $X = (A \setminus B) \cup (A \setminus B)$	C)	4. (0; 0; 1; 0; 0; 1; 0; 0)	
ОПІ	имеет вид:		1	D °
ОПК-	Выберите все правил		1. монотонной 2. монотонной 3.	Высокий
1.1.	1	ответ	2. несамодвойственной	
	запишите номера правил	ьных	3. сохраняющей 0	
	вариантов в пој	рядке	4. линейной	

	возрастания без пробелов	в и 5. немонотонной	
	запятых	6. самодвойственной	
		7. сохраняющей 1	
	$\Phi \text{ункция } f(x,y) = x \downarrow y$	8. нелинейной	
0.7774	является		
ОПК-	Выберите один правилы		Высокий
1.1.	вариант ответа.	1. 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	
	Матрица, соответствующая		
	бинарному отношению	$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$	
	$\rho = \left\{ \langle x, y \rangle x \in X, y \in X, \frac{2x + y}{3} \in Z \right\},$	$(1 \ 0 \ 0 \ 1 \ 0)$	
	,	0 1 0 0 1	
	заданному на множестве	2. 0 0 1 0 0	
	$X = \{1,2,3,4,5\}$, имеет вид:	0 0 0 1 0	
		(0 0 0 0 1)	
		$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$	
		3. 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{pmatrix}$	
		$(1 \ 0 \ 0 \ 1 \ 0)$	
		$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$	
		4. 0 0 1 0 0	
		1 0 0 0 0	
		(0 1 0 0 1)	
ОПК-	Выберите один правилы	ный $ $ 1. $xyz \oplus xy \oplus x \oplus y \oplus 1$	Высокий
1.1.	вариант ответа.	2. $xyz \oplus xz \oplus x \oplus y \oplus z$	
	Полином Жегалкина для	3. $xz \oplus xy \oplus y \oplus 1$	
	функции	, ,	
	f(x) = (0; 1; 1; 0; 1; 1; 0; 1) име	$\mathbf{e}_{\mathrm{T}} 4. xyz \oplus xy \oplus yz \oplus x$	
	вид:		
ОПК-	Установите соответствие ме	ежду функциями и их значениями.	Высокий
1.1.	В ответ запишите трехзначное число без пробелов и запятых.		
	Функция	Значение функции	
	А. Дизъюнкция	1. (1; 1; 0; 1)	
		2. (1; 1; 1; 0)	
		3. (0; 1; 1; 1)	
		4. (0; 0; 0; 1)	
		5. (0; 1; 1; 0)	