Задание для диагностического тестирования по дисциплине:

Механика жидкости и газа, 7 семестр

Код, направление подготовки	03.03.02	
Направленность (профиль)	Цифровые технологии в геофизике	
Форма обучения	очная	
Кафедра-разработчик	Кафедра экспериментальной физики	
Выпускающая кафедра Кафедра экспериментальной физики		

Проверяемая компетенция	Задание	Варианты ответов	Тип сложности вопроса	Кол-во баллов за правильный ответ
ОК-6 ОК-7 ОПК-3 ПК-1	Укажите один правильный ответ 1. Сплошная среда, обладающая свойством текучести, это	(1) плазма(2) газ(3) жидкость	Низкий	2
ОК-6 ОК-7 ОПК-3 ПК-1	Вставьте пропущенное слово 2 это свойство движущейся жидкости сплошным образом заполнять пространство или его часть	(1) неразличимость(2) нерушимость(3) неразрывность	Низкий	2
ОК-6 ОК-7 ОПК-3 ПК-1	Укажите один правильный ответ 3. Основное свойство жидкости	(1) прозрачность(2) вязкость(3) текучесть	Низкий	2
ОК-6 ОК-7 ОПК-3 ПК-1	Вставьте пропущенное слово 4 это жидкость, при движении которой возникают как нормальные, так и касательные напряжения	(1) прозрачная жидкость(2) вязкая жидкость(3) идеальная жидкость	Низкий	2

ОК-6	Укажите один	(1) однободумоску	Низкий	2
		(1) адиабатически	пизкии	2
	правильный	(2) изотермически		
	ответ	(3) изохорически		
	5. Обычно упругие			
	деформации в			
	жидкости			
	происходят			
	Укажите все	(1) о неограниченном	Средний	5
	правильные	временном интервале		
	ответы	(2) о бесконечно малом		
ПК-1	6. Возможность	промежутке времени		
	решения задач	(3) о неограниченном объеме		
	механики	среды жидкости		
	сплошных сред	(4) о бесконечно малом		
	основана на	объеме среды или сплошности		
	гипотезах:	среды (континууме)		
		(5) о бесконечно малой длине		
		свободного пробега частиц газа		
ОК-6	Укажите	$(1) \operatorname{div} \vec{\mathbf{v}} = 0$	Средний	5
ОК-7	правильный	(2) div $\vec{\mathbf{v}} = \vec{\mathbf{v}}$	_	
	ответ	(3) div $\vec{\mathbf{v}} = \operatorname{grad} \vec{\mathbf{v}}$		
ПК-1	7. Уравнение	(4) div $\vec{v} = v^2/2$		
	непрерывности для	(1) == 1		
	стационарного			
	состояния имеет			
	вид			
	Укажите все	(1) жидкость сжимаемая	Средний	5
	правильные	(2) жидкость не сжимаемая	1 ~	-
	ответы	(3) плотность жидкости		
	8. Какую жидкость	зависит только от		
	называют	давления		
	баротропной?	(4) температура жидкости		
	Назовите основные	постоянна		
	свойства	no Tomina		
	9. Установите	(1) 1а, 2б, 3в, 4г	Средний	5
	соответствие	(2) 1B, 2a, 3r, 46	Средиии	9
ОПК-3	1) Число	(3) 1r, 2B, 3a, 46		
ПК-1	Рейнольдса	(4) 16, 2a, 3r, 4b		
11111	выражает	(5) 1B, 2r, 3a, 46		
	2) Число Фруда	(<i>J</i> 1 <i>D</i> , <i>L</i> 1, <i>Ju</i> , TO		
	показывает			
	3) Число Эйлера			
	· •			
	показывает			
	4) Число Струхаля			
	характеризует			
	O OTHOUGHAND OVE			
	а. отношение сил			
	инерции к			
	объемным			
	силам			
	б. отношение			
	конвективной			
	составляющей			
	сил инерции к			
	локальной		i l	

		<u> </u>		
	составляющей			
	этих сил			
	в. отношение сил			
	инерции к силам			
	трения			
	г. отношение			
	нормальных сил			
	давления к			
	силам инерции			
ОК-6	Укажите все <u>не</u>	(1) критическая скорость потока	Средний	5
ОК-7	<u>верные</u> ответы	(2) фактическая скорость потока		
ОПК-3	10. Скорость	(3) динамическая скорость		
ПК-1	потока, равная	потока		
	местной скорости			
	звука, это			
ОК-6	Укажите все	(1) уравнение неразрывности	Средний	5
ОК-7	правильные	(2) уравнение Навье-Стокса		
ОПК-3	ответы	(3) систему уравнений Эйлера		
ПК-1	11. Что включает в	(4)систему уравнений Бернулли		
	себя полная	(5) уравнение, связывающее		
	замкнутая система	скорость изменения давления		
	уравнений	со скоростью изменения		
	гидродинамики	плотности		
	идеальной			
	жидкости?			
ОК-6	Укажите	(1) Движение жидкости, при	Средний	5
ОК-7	правильный	котором индивидуальные		
ОПК-3	ответ	частицы перемещаются только		
ПК-1	12. Что называют	поступательно		
	вихревым	(2) Движение жидкости, при		
	движением	котором индивидуальные		
		частицы перемещаются не		
		только поступательно, но и		
		вращаются около некоторой		
		мгновенной оси, проходящей		
		через эти частицы		
		(3) Движение жидкости, при		
		котором индивидуальные		
		частицы перемещаются не		
		только поступательно, но и в		
		обратном направлении		
ОК-6	Укажите	$\frac{\partial \rho_{M}}{\partial t_{M}} + \frac{t_{0}v_{0}^{2}}{l_{0}} \operatorname{div}(\rho_{M}\vec{v}_{M}) = 0$ $(1) \frac{v^{2}}{2} + \int \frac{dp}{\rho} - U = C$ $(2) \frac{v^{2}}{2} + c_{p}T = C$ $(3) \frac{v^{2}}{2} + c_{p}T = C$	Средний	5
ОК-7	правильный	$\int_{\Omega_t} \frac{1}{2\pi} \int_{\Omega_t} \frac{1}{2\pi} \operatorname{div}(\rho_M \tilde{\nu}_M) = 0$		
ОПК-3	ответ	$(1) \frac{Cl_{\rm M}}{2} \qquad l_0$		
ПК-1	13. Уравнение	$\frac{v^2}{\sqrt{1+c}} + \int \frac{dp}{\sqrt{1+c}} - U = C$		
	неразрывности в	(2) $\frac{2}{2}$ ρ ρ		
	безразмерном виде:	$\frac{v^2}{v^2}$		
		$(3) \frac{\overline{2} + c_p I - C}{2}$		
ОК-6	Укажите все	(1) Течение Куэтта	Средний	5
ОК-7	верные ответы	(2) Течение Пуазейля	<u>.</u>	
ОПК-3	14. Какие точные	(3) Течение Скрипаля		
ПК-1	решения уравнения	(4) Течение Маха		
	Навье-Стокса	(5) Задача Рэлея		
	существуют?			
L		<u> </u>	i	

ОК-6 ОК-7 ОПК-3 ПК-1	Укажите один правильный ответ 15. Интеграл Бернулли для несжимаемой тяжелой жидкости имеет вид:	1) $\frac{v^2}{2} + \int \frac{dp}{\rho} - U = C$ 2) $\frac{v^2}{2} + \frac{p}{\rho} + gh = C$ 3) $\frac{v^2}{2} + c_p T = C$	Средний	5
ОК-6 ОК-7 ОПК-3 ПК-1	16. Укажите все правильные ответы В чем заключается суть метода размерностей?	(1) в некоторых уравнениях используются одинаковые размерности (2) в любых уравнениях, описывающих физические явления или процессы, размерности левой и правой части должны совпадать (3) полученный результат не зависит от использованных размерностей (4) дает возможность восстанавливать различные соотношения между физическими величинами	Высокий	8
ОК-6 ОК-7 ОПК-3 ПК-1	Укажите все правильные ответы 17. Основные признаки идеальной жидкости	 отсутствуют силы трения жидкость несжимаема все касательные напряжения равны нулю плотность жидкости постоянна силы трения больше сил напряжения 	Высокий	8
ОК-6 ОК-7 ОПК-3 ПК-1	Укажите все правильные ответы 18. Два изотермических потока жидкости динамически подобны, если	(1)они обтекают геометрически подобные тела (2)равны их критерии подобия Струхаля, Рейнольдса, Маха и Фруда (3)скорости этих потоков равны (4)температуры этих потоков отличаются незначительно (5)обтекаемые тела расположены одинаково по отношению к набегающему потоку	Высокий	8
ОК-6 ОК-7 ОПК-3 ПК-1	Укажите все правильные ответы 19. Изменение Т в единицу времени t в частице среды характеризует изменение температуры со временем и называется	 (1) индивидуальной производной (2) особенной производной (3) субстанциональной производной (4) непрерывной производной (5) полной производной 	Высокий	8

ОК-6	Укажите все	(1) числа Рейнольдса	Высокий	8
ОК-7	правильные	(2) число Авогадро		
ОПК-3	ответы	(3) число Маха		
ПК-1	20. Назовите	(4) число Фруда		
	безразмерные	(5) число Струхаля		
	параметры потока	(6) число Скрипаля		
	жидкости и газа	(7) число Эйлера		