Бюджетное учреждение высшего образования

Ханты-Мансийского автономного округа-Югры "Сургутский государственный университет"

Термогидродинамические исследования пласта

рабочая программа дисциплины (модуля)

Закреплена за кафедрой

Экспериментальной физики

Учебный план

b030302-ЦифрТех-19-1.plx

03.03.02 ФИЗИКА

Направленность (профиль): Цифровые технологии в геофизике

Квалификация

Бакалавр

Форма обучения

очная

Общая трудоемкость

33ET

Часов по учебному плану	108
в том числе:	
аудиторные занятия	48
самостоятельная работа	33
часов на контроль	27

Виды контроля в семестрах:

экзамены 6

курсовые проекты 6

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	6 ((3.2)	Итого	
Недель	17,3			
Вид занятий	УП	РПД	УП	РПД
Лекции	16	16	16	16
Практические	32	32	32	32
Итого ауд.	48	48	48	48
Контактная работа	48	48	48	48
Сам. работа	33	33	33	33
Часы на контроль	27	27	27	27
Итого	108	108	108	108

Программу составил(и):

д.ф.-м.н., профессор Ельников А.В.

Рабочая программа дисциплины

Термогидродинамические исследования пласта

разработана в соответствии с ФГОС:

Федеральный государственный образовательный стандарт высшего образования по направлению подготовки 03.03.02 (уровень бакалавриата) (приказ Минобрнауки России от 07.08.2014г. №937)

составлена на основании учебного плана:

03.03.02 ФИЗИКА

Направленность (профиль): Цифровые технологии в геофизике

утвержденного учёным советом вуза от 20 июня 2019 г., протокол УС №6

Рабочая программа одобрена на заседании кафедры

Экспериментальной физики

Протокол от <u>// О5</u> 2019 г. № 03/40 Срок действия программы: - уч.г.

Зав. кафедрой д.ф.-м.н., профессор Ельников А.В.

Председатель УМСКТ. Н. доцент Тарагонов Д.В.

04 06 2019 r. V 06/19

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Целью освоения дисциплины «Термогидродинамические исследования пласта» является подготовка специалиста для производственно-технологической, проектной, научно-исследовательской, организационно-управленческой деятельности при поисках месторождения углеводородов.

	2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП						
Ци	Цикл (раздел) ООП: Б1.В.ДВ.05						
2.1	Требования к предварительной подготовке обучающегося:						
2.1.1	Общая и нефтепромысловая геология						
2.1.2	Математический анализ						
2.1.3	Дифференциальные уравнения						
2.1.4	Химия						
2.1.5	Петрофизика						
2.1.6	Физические основы разработки месторождений нефти						
2.1.7	Модуль "Общая физика"						
2.1.8	Экология						
	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как предшествующее:						
	Инженерная геология						
	Взрывное дело						
	Интерпретация геофизических данных						
	Сейсмические и акустические методы исследования						
2.2.5	Радиационная безопасность						
2.2.6	Подземная гидродинамика						
2.2.7	Телекоммуникационные системы в геофизике						
2.2.8	Компьютерные технологии в геофизике						

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОК-6: способностью работать в коллективе, толерантно воспринимая социальные, этнические, конфессиональные и культурные различия

ОК-7: способностью к самоорганизации и самообразованию

ОПК-1: способностью использовать в профессиональной деятельности базовые естественнонаучные знания, включая знания о предмете и объектах изучения, методах исследования, современных концепциях, достижениях и ограничениях естественных наук (прежде всего химии, биологии, экологии, наук о земле и человеке)

ОПК-3: способностью использовать базовые теоретические знания фундаментальных разделов общей и теоретической физики для решения профессиональных задач

ПК-1: способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин

В результате освоения дисциплины обучающийся должен

3.1	Знать:
3.1.1	- нормы и правила работы в составе исследовательской группы;

3.1.2	MOTORIA HOCATOTORONIA CERONIALI POSTUMIA NA STOCOSO PACASO					
	- методы исследования скважин различных способов эксплуатации					
3.1.3	- теоретические и физические закономерности термодинамических полей в однородных средах и в системе скважина-пласт и их аналитическое описание;					
3.1.4	- основные понятия теории фильтрации, методы решения уравнения пьезопроводности для различных моделей пласта;					
3.1.5	- физические и теоретические основы методов термогидродинамических исследований пласта;					
3.1.6	- принципы поиска, разведки и контроля разработки месторождений нефти и газа термогидродинамическими методами исследования пласта;					
3.1.7	- современный комплекс термогидродинамических исследований пласта.					
3.2	Уметь:					
3.2.1	- выбирать наиболее эффективные ресурсо- и энергосберегающие технологии для решения задач исследования скважин;					
3.2.2	- составить проект на исследования;					
3.2.3	- сформировать рациональный комплекс методов для изучения геологического разреза скважин, технического состояния скважин и контроля разработки месторождений.					
3.2.4	- провести интерпретацию результатов исследования материалов с определением качественной и количественной характеристики разреза с целью контроля разработки месторождений нефти и газа;					
3.3	Владеть:					
3.3.1	- основами планирования, проведения работ и обработки данных гидродинамических исследований;					
3.3.2	- навыками выбора рационального комплекса геофизических методов для решения геологических и технических задач;					
3.3.3	- навыками определения литологии пластов, выделения коллектора и определения их фильтрационно-емкостных свойств;					
3.3.4	- навыками контроля качества результатов геофизических измерений.					

	4. СТРУКТУРА И СС	ДЕРЖАНИ	ІЕ ДИС І	циплины ((МОДУЛЯ)		
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- иии	Литература	Инте ракт.	Примечание
	Раздел 1. Введение. Цели и задачи гидродинамических исследований скважин и пластов						
1.1	Введение. Понятие толерантности, основные правила и нормы поведения в многонациональном и многоконфессиональном обществе. Значение и роль гидродинамических исследований в развитии научных основ разработки нефтяных месторождений. Цели и задачи гидродинамических исследований скважин и пластов. /Лек/	6	2	ОК-6 ОК-7 ОПК-1 ОПК -3	Л1.1 Л1.4 Л1.5Л2.3Л3.2 Э1	0	Устный опрос
1.2	Основные гидродинамические параметры /Пр/	6	2	ОК-6 ОК-7 ОПК-1 ОПК -3	ЛЗ.1	0	Тест
1.3	Цели и задачи гидродинамических исследований скважин и пластов. Работа с литературой /Ср/	6	6	ОК-7 ОПК- 1 ОПК-3	Э1	0	Подготовка курсового проекта
	Раздел 2. Теоретические основы гидродинамических методов исследования						

				_			
2.1	Явления фильтрации. Закон Дарси. Уравнения общего закона фильтрации. Границы линейного закона фильтрации. Неустановившееся движение жидкости. Основные параметры теории упругого режима, управления пьезопроводности. /Лек/	6	3	ОПК-1 ОПК -3 ПК-1	Л1.1 Л1.5Л3.2 Э1	0	Устный опрос
2.2	Применение принципа суперпозиции для решения задач упругого режима фильтрации /Пр/	6	8	ОК-6 ОК-7 ОПК-3 ПК- 1	Л1.2Л3.1	0	Тест
2.3	Технология проведения исследований при различных способах эксплуатации скважин /Ср/	6	8	ОК-7 ОПК- 1 ОПК-3 ПК-1	Л1.2 Л1.4 Л1.5 Э1	0	Подготовка курсового проекта
	Раздел 3. Методы гидродинамических исследований пластов и скважин. Приборы и оборудование, используемое для исследований						
3.1	Виды гидродинамических исследований пластов и скважин. Область применения гидродинамических моделей различных типов коллекторов. Основные виды приборов и оборудования, используемого для гидродинамических исследований пластов и скважин. /Лек/	6	5	ОПК-1 ОПК -3 ПК-1	Л1.1Л3.2 Э1	0	Устный опрос
3.2	Критерии установившегося состояния. Построение индикаторных диаграмм при установившихся отборах. Определение продуктивности и приемистости скважин. Определение фильтрационных параметров пласта при установившихся отбора /Пр/	6	10	ОК-6 ОК-7 ОПК-1 ПК- 1	Л1.5Л2.4Л3.1	0	Тест
3.3	Формула Дюпюи. Учет гидродинамического несовершенства скважины. Построение математической модели системы «пласт-скважина». /Ср/	6	8	ОК-7 ОПК- 1 ПК-1	Л1.2 Л1.3 Л1.4 Э1	0	Подготовка курсового проекта
	Раздел 4. Исследование скважин, дренирующих трещиновато- пористый коллектор. Скин-эффект. Экспресс-методы исследования скважин.						
4.1	Исследование скважин, дренирующих трещиновато-пористый коллектор. Определение гидропроводимости, пьезопроводности и скин-эффекта. Теоретические основы определения границ пласта. Построение математической модели системы: «контур питания – пласт, призабойная зона пласта - скважина». Экспрессметоды исследования скважин. /Лек/	6	4	ОПК-1 ОПК -3 ПК-1	Л1.1 Л1.5Л3.2 Э1	0	Устный опрос
4.2	Исследование скважин и пластов методом восстановления (падения) давления. /Пр/	6	8	ОК-6 ОК-7 ОПК-1 ОПК -3 ПК-1		0	Тест
4.3	Факторы, определяющие форму кривых восстановления давления /Ср/	6	6	ОК-7 ОПК- 1 ОПК-3 ПК-1	Л1.3Л2.2 Э1	0	Подготовка курсового проекта
	Раздел 5. Исследование скважин и пластов методом гидропрослушивания и фильтрационных волн давления						•

5.1	Оценка взаимодействия скважин. Исследование скважин и пластов методом гидропрослушивания и фильтрационных волн давления. Определение гидропроводимости, пьезопроводности пласта и приведенного радиуса скважины /Лек/	6	2	ОПК-1 ОПК -3 ПК- 1	л1.1 л1.5л3.2 Э1	0	Устный опрос
5.2	Графоаналитические методы обработки кривых восстановления (падения) давления. Метод касательной. Метод Хорнера /Пр/	6	4	ОК-6 ОК-7 ОПК-1 ПК- 1	Л2.1 Э1	0	Устный опрос
5.3	Метод Минеева. Обработка результатов с учетом дополнительного притока жидкости в скважину. Аналитические методы обработки кривых восстановления давления /Ср/	6	5	ОК-7 ОПК- 1 ОПК-3 ПК-1	Л1.3Л2.3 Э1	0	Подготовка курсового проекта
	Раздел 6. Термогидродинамические исследования пласта						
6.1	/КП/	6	0			0	
6.2	/Экзамен/	6	27			0	

	5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	
	5.1. Контрольные вопросы и задания	
Приложение № 1		
	5.2. Темы письменных работ	
Приложение № 1		
	5.3. Фонд оценочных средств	
Приложение № 1		
	5.4. Перечень видов оценочных средств	
Опрос по теоретическому мате	риалу, курсовой проект, тест по разделам 1-4, экзамен.	

6.	УЧЕБНО-МЕТОДИЧ	ЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС	сциплины (мод	УЛЯ)			
	6.1. Рекомендуемая литература						
		6.1.1. Основная литература					
	Авторы, составители	Заглавие	Издательство, год	Колич-во			
Л1.1	Богословский В. А., Хмелевский В. К.	Геофизика: учебник	Москва: Книжный дом Университет, 2015	15			
Л1.2	Аплонов С. В., Титов К. В.	Геофизика для геологов: учебник	Санкт-Петербург: Издательский дом Санкт-Петербургского государственного университета, печ. 2012	5			
Л1.3	Попов В. В., Сианисян Э. С.	Геолого-технологические исследования в нефтегазовых скважинах: Учебное пособие	Ростов-на-Дону: Южный федеральный университет, 2011, http://www.iprbook shop.ru/46939	1			
Л1.4	Соколов А.Г., Черных Н.В.	Геофизические методы поисков и разведки месторождений полезных ископаемых: учебное пособие	Оренбург: Оренбургский государственный университет, ЭБС ACB, 2015, http://www.iprbook shop.ru/54110.html	1			

Авторы, соста	вители Заглавие	Издательство, год	Колич-во
Рогоцкий Г.В., Л1.5 Соколов А.Г., Панкратьев П.		Оренбург: Оренбургский государственный университет, ЭБС ACB, 2015, http://www.iprbook shop.ru/54114.html	1
	6.1.2. Дополнительная литература		
Авторы, соста	Заглавие вители	Издательство, год	Колич-во
Л2.1 Карнаухов М Пьянкова Е. М		Москва: Инфра- Инженерия, 2013, http://www.iprbook shop.ru/13549	1
Л2.2 Прозорова Г. Н	Комплексирование нефтегазопоисковых методов: учебное пособие : в 2 ч.	Ростов-на-Дону: Издательство Южного федерального университета (ЮФУ), 2011, http:// znanium.com/ go.php?id=550809	1
Минаев А. М., Л2.3 Мордасов Д. М Бадирова Н. Б.	Термодинамика в материаловедении: Учебное пособие 1.,	Тамбов: Тамбовский государственный технический университет, ЭБС АСВ, 2015, http://www.iprbook shop.ru/63908.html	1
Хащенко А. А. Л2.4 Калиниченко М Вислогузов А.	И. Ю.,	Ставрополь: Северо- Кавказский федеральный университет, 2017, http://www.iprbook shop.ru/75606.html	1
	6.1.3. Методические разработки		
Авторы, соста		Издательство, год	Колич-во
Л3.1 Манина Е. А., Шадрин Γ. А.	Обработка результатов измерений физического практикума: учебно-методическое пособие для студентов всех специальностей	Сургут: Издательство СурГУ, 2007	98
6.2.	 Перечень ресурсов информационно-телекоммуникационной се		

	Э1) Google Scholar – Академия Google (scholar.google.ru);
		2) Проект scholar.ru;
		3) Российская государственная библиотека (www.rsl.ru);
		4) Электронная библиотека eLIBRARY.RU;
		5) Книгафонд (www.knigafund.ru);
		б) Сводный каталог библиотек России в свободном доступе (www.skbr2.nilc.ru);
		7) Scopus (www.scopus.com);
		8) Web of Science и Web of Knowledge (wokinfo.com, webofknowledge.com);
		9) Арбикон (www.arbicon.ru);
		10) Национальная электронная библиотека (нэб.рф);
		11) Электронная библиотека диссертаций (dvs.rsl.ru);
		12) Издания по естественным и техническим наукам (dlib.eastview.com);
		13) Единое окно доступа к образовательным ресурсам - информационная система window.edu.ru/window;
		14) ВИНИТИ (www.viniti.ru);
		15) ГПНТБ CO PAH (www.spsl.nsc.ru);
Ţ		16) Российская национальная библиотека (www.nlr.ru).
		6.3.1 Перечень программного обеспечения
	6.3.1.1	Пакет прикладных программ Microsoft Office
	6.3.1.2	Операционная система Windows
		6.3.2 Перечень информационных справочных систем
	6.3.2.1	http://www.garant.ru/ Информационно-правовой портал Гарант.ру
	6.3.2.2	http://www.consultant.ru/ Справочно-правовая система Консультант Плюс

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

7.1 Лекционные занятия проходят в аудиториях, оборудованных проекционными средствами (медиапроектором, ноутбуком и экраном (стационарным или переносным рулонным на треноге) для использования демонстрационных материалов и презентаций.

8. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

ОЦЕНОЧНЫЕ СРЕДСТВАПриложение к рабочей программе по дисциплине

ТЕРМОГИДРОДИНАМИЧЕСИЕ ИССЛЕДОВАНИЯ ПЛАСТА

Квалификация	Бакалавр
выпускника	
Направление подготовки	03.03.02 Физика
Направленность (профиль)	Цифровые технологии в геофизике
Форма обучения	Очная
Кафедра- разработчик	экспериментальной физики
Выпускающая кафедра	экспериментальной физики

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Этап: проведение текущего контроля успеваемости по дисциплине (6 семестр)

Вопросы для проведения устного опроса по теоретическому материалу

Раздел 1. Введение. Цели и задачи гидродинамических исследований скважин и пластов.

- 1. ГИС, как раздел разведочной геофизики. Основные понятия и определения.
- 2. Физические поля, на которых основаны методы ГИС.
- 3. Геологоразведочные скважины, как объект исследования методами ГИС. Схема производства каротажа.
- 4. Технология геофизических исследований и работ в геологоразведочных скважинах.
- 5. Физико-геологические предпосылки применения ГИС в рудных, угольных и нефтегазоразведочных скважинах. Особенности строения прискважинной зоны в проницаемых пластах.
- 6. Основные понятия о телеметрической системе передачи информации в методах ГИС.

Раздел 2. Теоретические основы гидродинамических методов исследования.

- 1. Обобщенная характеристика и блок-схема каротажа КС.
- 2. Устройство зонда КС, его использование в качестве осевой электроразведочной установки.
- 3. Классификация зондов КС. Принцип взаимности при регистрации каротажных кривых однополюсными и двухполюсными зондами.
- 4. Характеристика прямых и обращенных градиент-зондов КС.
- 5. Характеристика потенциал-зондов КС.
- 6. Выбор оптимальных зондов КС на месторождениях различного типа.
- 7. Форма кривых потенциал-зондов и градиент-зондов КС для пластов большой, средней и малой толщин.
- 8. Схема обработки каротажных диаграмм.
- 9. Основы геофизической интерпретации кривых каротажа КС. Теоретические (палеточные) кривые.
- 10. Основы геологической интерпретации кривых каротажа КС.
- 11. Сущность бокового каротажного (электрического) зондирования.
- 12. Первичная обработка и последующая количественная интерпретации кривых БКЗ.
- 13. Типовые формы кривых БКЗ для условий повышающего и понижающего проникновения фильтрата промывочной жидкости в продуктивный пласт.
- 14. Общие сведения о микрокаротаже методами КС.
- 15. Устройство зондов МК и блок-схема измерений.
- 16. Типовые зонды МК. Соотношение каротажных кривых МК над проницаемыми и непроницаемыми пластами в нефтегазоразведочных скважинах.
- 17. Метод резистивиметрии в геологоразведочных скважинах (форма каротажных кривых, область применения).
- 18. Блок-схемы скважинного и поверхностного резистивиметра.
- 19. Сущность и области применения токового каротажа.
- 20. Блок-схемы токового каротажа (ТК) и каротажа методом скользящих контактов (МСК).
- 21. Общие сведения об электрическом каротаже с фокусированными зондами.

- 22. Сущность дивергентного каротажа и область его применения.
- 23. Схема зонда дивергентного каротажа (ДГК).
- 24. Общие сведения о боковом каротаже.
- 25. Устройство зондов бокового каротажа. Форма кривых БК.
- 26. Микрокаротаж БК. Устройство пластовых наклономеров на основе БК.
- 27. Обобщенная характеристика электромагнитных методов ГИС.
- 28. Общие сведения об индукционном каротаже (ИК). Устройство зондов ИК, их шифр.
- 29. Общие сведения о диэлектрическом каротаже (ДК).
- 30. Физическая сущность ДК, его отличие от ИК и ВИКИЗ.
- 31. Зонды ДК, их маркировка. Форма кривых ДК.
- 32. Общие сведения о методе ПС. Физические основы метода ПС.
- 33. Схема измерений в методе ПС, форма каротажных кривых.
- 34. Литологическое расчленение разрезов скважин методом ПС в комплексе с другими методами каротажа.
- 35. Общие сведения о методе потенциалов вызванной поляризации (ВП).
- 36. Сущность метода ВП, блок-схема измерений.

Раздел 3. Методы гидродинамических исследований пластов и скважин. Приборы и оборудование, используемое для исследований.

- 1. Обобщенная характеристика ядерно-физических методов ГИС.
- 2. Радиоактивное поле в скважинах. Физическая сущность естественной и наведенной радиоактивности.
- 3. Естественная радиоактивность горных пород.
- 4. Сущность метода ГК.
- 5. Устройство скважинных приборов и форма каротажных кривых. ГК.
- 6. Спектрометрическая модификация ГК.
- 7. Процесс взаимодействия гамма-квантов с веществом, как основа методов ГГК и ГГК-С.
- 8. Типы взаимодействия гамма-квантов с веществом.
- 9. Сущность плотностного гамма-гамма каротажа (ГГК).
- 10. Зонды ГГК, форма каротажных кривых.
- 11. Общие сведения о селективном гамма-гамма каротаже (ГГК-С).
- 12. Общие сведения о нейтронных методах каротажа.
- 13. Нейтронные свойства горных пород.
- 14. Процессы взаимодействия нейтронов с веществом.
- 15. Характеристика тенденции изменения времени жизни и длины замедления нейтронов в горных породах.
- 16. Обобщенная характеристика стационарных методов НК.
- 17. Применение методов НК в нефтегазоразведочных и нефтегазопромысловых скважинах.
- 18. Литологическое расчленение разрезов скважин по диаграммам НК.
- 19. Определение водонефтяного (ВНК) и газожидкостного контактов (ГЖК) по каротажным диаграммам НК.
- 20. Сущность импульсного нейтронного каротажа (ИНК).
- 21. Разновидности ИНК и область их применения.

Раздел 4. Исследование скважин, дренирующих трещиновато- пористый коллектор. Скин-эффект. Экспресс-методы исследования скважин.

- 1. Обобщенная характеристика сейсмоакустических методов ГИС.
- 2. Краткая теория АК.
- 3. Устройство зондов АК, их обозначение. Форма кривых АК.
- 4. Многоэлементный зонд АК, вид волновых картин. Фазокорреляционные диаграммы в методе АК (ФКД).

- 5. Краткие сведения об аппаратуре и область применения АК.
- 6. Скважинное акустическое телевидение (САТ).
- 7. Акустические кавернометрия и профилеметрия.
- 8. Краткая характеристика каротажа приборами, транспортируемыми буровым инструментом (ТБИ).
- 9. Сущность и область применения газового каротажа.
- 10. Прострелочно-взрывные работы и опробование скважин в открытом стволе (перфорация, отбор образцов пород грунтоносами).
- 11. Опробование пластов приборами на кабеле (метод ОПК).
- 12. Обобщенная характеристика методов технического состояния скважин.
- 13. Метод инклинометрии (устройство скважинного прибора, построение инклинограмм).
- 14. Методы кавернометрии и профилеметрии (схемы измерений, устройство скважинных приборов, форма каротажных кривых, область применения).
- 15. Геофизический контроль качества цементирования обсадных колон в эксплуатационных нефтегазовых скважинах (методы термометрии, радиоактивного и акустического каротажа).

Раздел 5. Исследование скважин и пластов методом гидропрослушивания и фильтрационных волн давления.

- 1. Расчленение разрезов скважин по данным комплекса ГИС.
- 2. Определение литологических характеристик пород.
- 3. Выбор комплекса методов для изучения терригенных отложений.
- 4. Выбор комплекса методов для изучения карбонатных отложений.
- 5. Выделение коллекторов в разрезах скважин.
- 6. Прямые признаки коллекторов.
- 7. Косвенные признаки коллекторов.
- 8. Оценка характера насыщения коллекторов.
- 9. Определение коллекторских свойств пластов.

Методические материалы, определяющие процедуры оценивания результатов обучения, характеризующих этапы формирования компетенций, описание шкал оценивания

Этап: проведение текущего контроля успеваемости по дисциплине (6 семестр)

Текущий контроль предназначен для проверки качества формирования компетенций, уровня овладения теоретическими и практическими знаниями, умениями и навыками. Оценивание знаний теоретического материала по каждому разделу проводится при устном опросе и тестировании. Умение решать практические задачи проверяется контролем выполненного курсового проекта.

Критерии оценивания результатов тестирования построены по принципу перевода количества верных ответов в пятибалльную шкалу.

Схема оценивания усвоения знаний в ходе текущего контроля

Тип задания	Проверяемые компетенции	Критерии оценки	Оценка
Устный опрос	ОК-7, ОПК-1, ОПК-3, ПК-1	Ответ раскрывает тему вопроса, материал изложен логически последовательно.	Аттестован

		Ответ не раскрывает тему вопроса, обнаружены значительные пробелы в знаниях	Не аттестован
Тест	ОК-7, ОПК-1, ОПК-3, ПК-1	Процент верных ответов от общего числа заданий:	
	- /	0-34%	1
		35-50%	2
		51-69%	3
		70-80%	4
		81-100%	5
Курсовой проект	ОК-6, ОК-7,	Курсовой проект выполнен в	
	ОПК-1, ОПК-3,	соответствии с требованиями,	
	ПК-1	предъявляемыми к оформлению	
		курсового проекта,	
		студент полностью и правильно	
		выполнил расчеты по всем	
		заданиям, провел анализ	Зачтено
		полученных результатов и сделал	
		обоснованные выводы,	
		правильно оформил, сдал и	
		защитил отчет по курсовому	
		проекту преподавателю, ответив	
		на вопросы по теме курсового	
		проекта.	
		Курсовой проект не выполнен	
		или работа представлена с	
		существенными замечания к	
		содержанию и оформлению.	
		студент не полностью и (или)	
		неправильно выполнил расчеты	Не зачтено
		по всем заданиям, не провел	
		анализ полученных результатов и	
		не сделал обоснованных	
		выводов, не сдал или не защитил	
		отчет по курсовому проекту	
		преподавателю, не ответив на	
		вопросы по теме курсового	
		проекта.	

КОМПЛЕКТ ЗАДАНИЙ ДЛЯ ТЕСТИРОВАНИЯ

Тест содержит 100 заданий, на выполнение которых отводится 120 минут. Выберите наиболее правильный, по Вашему мнению, вариант ответа и отметьте его любым значком в бланке ответов. Из предложенных вариантов ответа правильным считается только один. В вопросах, требующих короткого ответа, в бланке необходимо вписать пропущенное слово или словосочетание. В заданиях на сопоставление ответ также вписывается в графу, соответствующую номеру вопроса. Например, 1В, 2Б, 3А.

1. Расшифруйте аббревиатуру ГИС

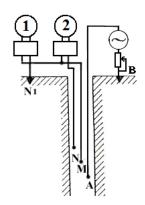
- А) геоинформационные системы
- Б) геофизические исследования скважин
- В) геофизические измерения структур земной коры
- Г) геофизическая информация сейсморазведки

2. Установите соответствие между обозначениями видов каротажа и их назначением

1.	КС	A)	изучение	В	разр	езах	сква	жин
		литоло	огического	сост	ава	пород	ПО	ИХ
		способ	бности	реагир	овать	на	Ι	толе
		корпус	скулярного	излуче	ения			
2.	ГГК	Б)	изучение	В	разр	езах	сква	жин
		литоло	огического	сост	ава	пород	ПО	ИХ
		способ	бности	реагир	овать	на	Ι	толе
		электр	оических за	арядов	на гра	аницах	разде	елов
		сред						
3.	АК	B)	изучение	В	разр	езах	сква	жин
		литоло	огического	сост	ава	пород	ПО	ИХ
		вибраг	ционное по.	пе				

- 3. ГИС, согласно принятой терминологии, еще называют каротажем, а в нефтегазовых скважинах геофизикой.
 - 4. Скважина при производстве ГИС выступает в качестве:
 - А) геофизического профиля
 - Б) геофизического модуля
 - В) геофизической структуры
 - Г) всё перечисленное верно
- 5. В скважинных приборах ГИС регистратором геофизических полей называется:
 - А) датчик поля
 - Б) источник поля
 - В) резисторный коммутатор
 - В) счётчик Гейгера-Мюллера
- **6.** Вставить пропущенные слова в предложении: Глинистые частицы оседают на стенке скважины, и образуется, которая препятствует разрушению породы и снижает дальнейшее поступление фильтрата жидкости в пласт

 1) d_c
 A) диаметр промытой зоны


 2) d_m
 Б) диаметр каверны

 3) d_к
 В) диаметр скважины

Найдите соответствие между обозначением

и фактическим состоянием диаметров в стволе скважины после её бурения:

- 8. Почему в скважине при каротажных исследованиях, как и в наземной геофизике, регистрируют преимущественно кажущиеся параметры?
 - А) влияет буровой раствор
- Б) размер измерительных датчиков не во всех случаях соответствует толщинам пластов
- В) под воздействием бурового инструмента частично изменяются физико-химические условия естественного залегания пород в прилегающем к стенке скважины пространстве
 - Г) всё перечисленное верно
- 9. Изменяются ли в разрезах скважин геостатическое давление и температура?
 - А) да
 - Б) нет
- **10. Продолжите:** процесс интерпретации каротажных диаграмм, особенно количественной, требует постановки и решения прямых
- 11. При производстве ГИС требуется применение телеизмерительных систем, включающих:
 - А) датчик поля (скважинный прибор)
 - Б) канал передачи информации (каротажный кабель)
- В) электронные блоки (кодоимпульсные или частотно-модулированные, способные к одновременной регистрации нескольких параметров
 - Г) Всё перечисленное верно
- 12. Какие из перечисленных методов ГИС получили наименьшее применение в практике геологоразведочных работ?
 - А) электромагнитные
 - Б) радиоактивные
 - В) акустические
 - Г) магнитные и гравиметрические
 - 13. Каротаж методами КС на основе:
 - А) поля постоянного и квазипостоянного тока
 - Б) радиоволнового поля
 - В) гравитационного поля
 - Г) теплового поля
- 14. ГИС методами КС основаны на использовании искусственно созданного поля?
 - да
 - 2) нет
- 15. ГИС методами ПС основаны на использовании искусственно созданного поля?
 - 3) да
 - **4**) нет
 - 16. На приведенной схеме электрического каротажа какой из каналов (1 или 2) служит для регистрации КС?

- 17. Какой параметр поля регистрируется измерительными электродами зондами КС?
- А) разность потенциалов
- Б) потенциал электрического поля
- В) плотность тока
- Г) электрическая индукция
- 18. Принцип взаимности в зондах КС состоит в том, что:
- А) меняется один из питающих электродов на один из измерительных
- Б) два измерительных электрода меняются местами
- В) два питающих электрода меняются местами
- Г) меняются местами измерительные и питающие электроды
- **19**. **Дополните:** Зонд с одним питающим электродом носит название, а с двумя питающими
- **20. Если расстояние между измерительными электродами велико**, и один из них приближен к питающему электроду, то зонд КС носит название
- **21.** Если расстояние между измерительными электродами мало, и их центр удалён от питающего электрода, то зонд КС носит название
 - 22. В приведенной схеме определите какой цифрой обозначен кровельный зонд

Градиент-зонды		
1	2	
A • M • T T A • T T N • B • T T T T T T T T T T T T T T T T T	N 0 B 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

23. Определите соответствие соотношения мощности пластов с длинами зондов КС:

1. пласт большой мощности	А) размер зонда больше мощности пласта
2. пласт средней мощности	Б) размер зонда меньше мощности пласта
3. пласт малой мощности	В) размер зонда равен мощности пласта

24.	При	записи	каротажных	диаграмм	выбираются		условия	их
регистрации,	то ест	ть те, кот	орые в наилучі	пей степени	позволяют вы	іделить гран	ницы плас	тов
и охарактери	зовать	их литол	погическую при	инадлежност	Ъ			

25. Интерпретация каротажных кривых всех методов ГИС, состоит в:

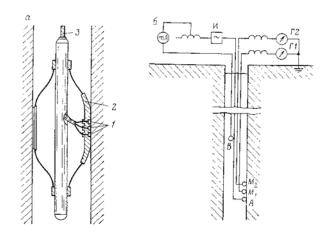
- А) первичной обработке диаграмм
- Б) геофизической интерпретации
- В) геологической интерпретации
- Г) всё перечисленное верно

26. Обработка каротажных диаграмм сводится к:

- А) приведению результатов к определенным глубинам и системе отсчетов
- Б) учету и устранению аппаратурных и других помех
- В) нахождению границ пластов и снятию показаний
- Г) всё перечисленное верно

27. Как расшифровывается технология БКЗ?

- А) безэлектродный каротаж записи
- Б) боковое каротажное зондирование
- В) боковой КС-зонд
- Г) всё перечисленное верно


28. В каком масштабе строятся палетки БКЗ?

- А) в билогарифмическом
- Б) в арифметическом
- В) в полулогарифмическом
- Г) в асимптотическом

29 Для проницаемых пластов применяют палеточные кривые БКЗ:

- А) однослойные и двухслойные
- Б) двухслойные и трёхслойные
- В) трёх- и четырёхслойные
- Г) всё перечисленное верно
- **30. БКЗ** заключается в измерении рк в заданном интервале скважины несколькими однотипными зондами (градиент- или потенциал-), отличающимися по параметру
- **31.** В случае наличия повышающего или понижающего проникновения, фактические кривые БКЗ не совпадают с теоретическими 2-х-слойной палетки. В первом случае отмечается фактической кривой, а во втором
- 32. Относятся ли к методам сопротивлений микробоковой, токовый и дивергентный каротажи?
 - А) да
 - Б) нет

33. Какая схема измерений изображена на рисунке?

- А) микрокаротаж градиент-зондом
- Б) микрокаротаж потенциал-зондом
- В) микрокаротаж потенциал- и градиент-зондами
- Г) микробоковой каротаж

34. Какие задачи решаются с помощью микрокаротажа сопротивлений?

- А) определение толщины глинистой корки
- Б) расчленение продуктивных пластов на проницаемые и непроницаемые
- В) определение границ пластов и их эффективной толщины
- Γ) всё перечисленное верно

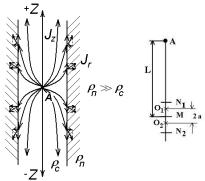
35. Резистивиметрия – метод ГИРС, предназначенный для измерения УЭС

36. В чём различие скважинного и поверхностного резистивиметров?

- А) в различных электронных схемах
- Б) в неодинаковом размере между питающими и измерительными электродами
- В) в неодинаковой конструкции приборов
- Г) всё перечисленное верно

37. Что собой представляет токовый каротаж?

- А) каротаж измерения силы тока по стволу скважины
- Б) каротаж определения удельного электрического сопротивления пластов в стволе скважины
 - В) каротаж определения сопротивления бурового раствора в стволе скважины
 - Г) модифицированный вариант метода кажущихся сопротивлений


38. Метод скользящих контактов (МСК) это разновидность

- А) токового каротажа
- Б) микроселективного каротажа
- В) каротажа микрозондами
- Г) скважинной кавернометрии

39. Найдите соответствие между аббревиатурой и сущностью методов электрического каротажа с фокусированными зондами

1)	ДВК	А) микрокаротаж с фокусировкой питающих электродов
2)	БК	Б) каротаж с фокусировкой питающих электродов

40. Какую разновидность каротажа поясняют представленные схемы?

- А) токовый каротаж
- Б) каротаж методом скользящих контактов
- В) дивергентный каротаж
- Г) микробоковой каротаж

41. Виды бокового каротажа:

- А) трёхэлектродный
- Б) семи электродный
- В) девяти электродный
- Г) всё перечисленное верно

42. Чему равна глубина 3-х электродного зонда бокового каротажа?

- А) трёхкратной длине экранирующего электрода
- Б) длине зонда
- В) половине длине зонда
- Г) двукратной длине зонда

43. Какова конструктивная особенность зондов микробокового каротажа?

- А) на прижимном резиновом башмаке размещены точечные электроды
- Б) на прижимном резиновом башмаке размещены два линейных экранных электрода и один точечный токовый
- В) на прижимном резиновом башмаке размещены круговой замкнутый экранный электрод и один точечный токовый электрод
- Г) трёхэлектродный зонд малого размера, помещённый в охранный перфорированный диэлектрический кожух

44. Особенность устройства пластовых наклономеров на основе зондов микробокового каротажа:

- А) скважинный прибор, на котором по окружности имеется несколько прижимных башмаков с зондами микробокового каротажа
- Б) скважинный прибор 3-х электродного бокового каротажа, включающий микропроцессорный модуль для вычисления углов наклона пластов в скважине
- В) скважинный прибор с выдвижным сканирующим блоком для регистрации границ, пересекаемых скважиной пластов
- Г) скважинный прибор 7-ми электродного бокового каротажа, включающий микропроцессорный модуль для вычисления углов наклона пластов в скважине

45. Основные разновидности электромагнитного каротажа:

А) магнитострикционный и мюонный

- Б) радиоволновой и импульсно-нейтронный
- В) пьезоэлектрический и диэлектрический
- Г) индукционный и диэлектрический
- 46. Электромагнитный каротаж выполняется скважинным прибором, включающем генераторные и измерительные катушки.
 - 1. да
 - 2. нет
- 47. Какому виду каротажа соответствует схема приведенного на рисунке прибора:

- А) только радиоактивному
- Б) только индукционному
- В) индукционному и диэлектрическому
- Г) только диэлектрическому

48. Индукционный каротаж основан на измерении:

- А) удельной электропроводности
- Б) магнитной восприимчивости
- В) диэлектрической проницаемости
- Г) пьезоэлектрической активности

49. Индукционный каротаж отличается от диэлектрического:

- А) по конструкции скважинных зондов
- Б) по скорости каротажа
- В) по используемой частоте электромагнитного поля
- Г) по масштабам регистрации каротажных кривых

50. ВИКИЗ – это модификация каротажа:

- А) индукционного
- Б) диэлектрического
- В) индукционного и диэлектрического
- Г) мюонного

51. Зондовая часть прибора ВИКИЗ состоит из пяти зондов:

- А) семикатушечных
- Б) двухкатушечных
- В) трёхкатушечных
- Г) однокатушечных

52. Изопараметрические условия технологии ВИКИЗ состоят в:

А) константе произведения квадратного корня частоты на длину зонда

- Б) константе отношения базы зонда (расстояние между измерительными катушками) к длине этого зонда
- В) как в константе произведения квадратного корня частоты на длину зонда, так и в константе отношения базы зонда (расстояние между измерительными катушками) к его длине
- Г) в существовании асимптотической зависимости между разностью фаз и удельным электрическим сопротивлением

53. Кривые ВИКИЗ над проницаемым водонасыщенным пластом характеризуются:

- А) последовательным уменьшением показателя рк от коротких зондов к длинным
- Б) последовательным увеличением показателя рк от коротких зондов к длинным
- В) первоначально уменьшением, а затем увеличением показателя рк от коротких зондов к длинным
- Γ) первоначально увеличением, а затем уменьшением показателя ρ к от коротких зондов к длинным

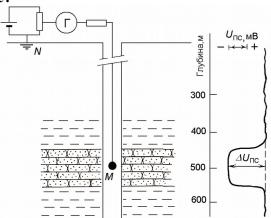
54. Кривые ВИКИЗ над проницаемым газонасыщенным пластом характеризуются:

- А) первоначально уменьшением, а затем увеличением показателя рк от коротких зондов к длинным
 - Б) последовательным уменьшением показателя рк от коротких зондов к длинным
 - В) последовательным увеличением показателя рк от коротких зондов к длинным
- Γ) первоначально увеличением, а затем уменьшением показателя ρ к от коротких зондов к длинным

55. Кривые ВИКИЗ над проницаемым нефтенасыщенным пластом характеризуются:

- А) последовательным уменьшением показателя рк от коротких зондов к длинным
- Б) инверсией кривых рк, полученных зондами малых и средних значений
- В) первоначально увеличением, а затем уменьшением показателя рк от коротких зондов к длинным
- Γ) первоначально уменьшением, а затем увеличением показателя ρ к от коротких зондов к длинным

56. Основная цель количественной интерпретации данных ВИКИЗ и БКЗ:


- А) литологическое расчленение разрезов скважин
- Б) определение мощности продуктивных пластов
- В) определение глубины залегания продуктивных пластов
- Г) определение показателей продуктивного пласта и зоны проникновения

57. Кривые зондирования в технологии ВИКИЗ представляются для интерпретации в масштабе:

- А) полулогарифмическом
- Б) арифметическом
- В) билогарифмическом
- Г) асимптотическом
- **58. Найти соответствие** между названием и характеристикой физико-химических и электрокинетических процессов образования потенциалов естественной поляризации в скважинах

1)	окислительно-восстановительные	А) динамика подземных вод (потенциалы
процессы		течения)
2)	фильтрационные процессы	Б) контакт пластов различной
		проницаемости и электропроводности
3) ди	ффузионно-адсорбционные процессы	В) контакт подземных вод с буровым
		раствором

59. Какой пласт характеризуется отрицательной аномалией ПС на приведенном рисунке?

- А) известняка
- Б) мергеля
- В) песчаника
- Г) аргиллита

60. При каких скважинных условиях аномалии ПС меняют знак на противоположный?

- А) минерализация пластовых вод и промывочной жидкости одинаковы
- Б) минерализация пластовых вод больше бурового раствора
- В) минерализация пластовых вод меньше бурового раствора
- Г) скважина пересекает гидротермальный горизонт
- **61. В методе** ВП существующее поле ПС искусственно с целью последующего наблюдения спада суммарного поля, который не одинаков в разных по литологическому составу породах.

62. Метод ВП наиболее эффективно используется на месторождениях:

- А) нефтяных
- Б) рудных
- В) газовых
- Г) угольных

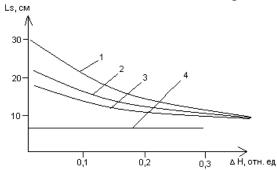
63. Радиоактивный каротаж основан на изучении радиоактивного поля:

- А) только естественного излучения
- Б) только искусственного излучения
- В) естественного и искусственного излучения
- Г) только наведенного излучения быстрых нейтронов

- **64.** Естественная радиоактивность I_{γ} самопроизвольный распад неустойчивых ядер атомов, подчиненный определенному закону
- **65.** В ядерной физике для изучения радиоактивного распада вводится единица Т1/2 период

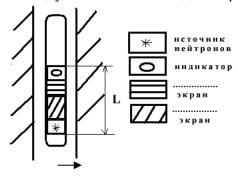
66. Найдите соответствие между названием процессов и их сущностью при взаимодействии гамма-квантов с веществом:

1)	фотоэффект	А) ү- кванты взаимодействуют с
		электронами, передавая им часть энергии, а
		затем испытывают многократное рассеяние
2)	комптоновский эффект	Б) из фотонов возникают пары в поле ядер
		атомов
3)	образования электронно-позитронных	В) ү – кванты взаимодействуют с
	пар	электронной оболочкой атома


- **67**. Естественное у-излучение горных пород в основном определяется содержанием в них элементов:
 - А) тория, цезия, кобальта
 - Б) калия, урана, тория
 - В) цезия, кобальта, урана
 - Г) торона, актинона, радона
- **68.** Как правильно расположены породы по степени убывания их радиоактивности?
 - А) алевролиты песчаники аргиллиты мергели
 - Б) аргиллиты, алевролиты, мергели, песчаники
 - В) песчаники, мергели, аргиллиты, алевролиты
 - Г) мергели, алевролиты, песчаники, аргиллиты
- **69**. При каротаже ГК измеряют радиоактивность (Ј γ) в скважине с помощью специального скважинного прибора, содержащего электронную схему и индикатор гамма-излучения
 - 70. Метод ГК является одним из основных при:
 - А) литологическом расчленении разрезов скважин
 - Б) выделении нефтяных пластов
 - В) выделении газовых пластов
 - Г) выделении рудных тел
- **71.** Аппаратура спектрометрического гамма-каротажа (СГК) позволяет регистрировать:
 - А) процентное содержание тория, цезия и америция
 - Б) процентное содержание урана, тория, калия и суммарное гамма-излучение
 - В) процентное содержание свинца, тория, калия и суммарное гамма-излучение
 - Г) процентное содержание радона, торона, актинона и суммарное гамма-излучение
- **72.** Метод гамма-гамма каротажа (ГГК) создан на основе-эффекта, а метод гамма-гамма селективного каротажа (ГГК-С) на основе-эффекта
- 73. В зондовой части прибора ГГК индикатор гамма-квантов защищается от прямого «первичного» гамма-излучения источника экраном из:

- А) стали
- Б) парафина
- В) свинца
- Г) текстолита
- 74. Метод ГГК-П в нефтегазоразведочных скважинах применяют для:
- А) определения плотности горных пород
- Б) оценки качества крепления скважин
- В) изучения качества цементации затрубного пространства
- Г) всё перечисленное верно

75. Определите соответствие между аббревиатурой и полным названием методов нейтронного каротажа:


 НГК 	А) нейтрон-нейтронный каротаж по		
	надтепловым нейтроном		
2) HHK-T	Б) нейтрон-нейтроный каротаж по		
	тепловым нейтронам		
3) HHK-HT	В) нейтронный гамма-каротаж		

- **76.** Какие основные процессы имеют место при взаимодействии нейтронов с горными породами?
 - А) упругое и неупругое рассеивание гамма квантов
 - Б) только замедление быстрых нейтронов
 - В) только диффузия тепловых нейтронов
 - Г) замедление быстрых и диффузия тепловых нейтронов
 - 77. При взаимодействии нейтронов с горными породами основную роль играет:
 - А) стадия преобразования пород
 - Б) водородосодержание
 - В) глинистость
 - Г) состав промывочной жидкости
- **78.** В приведенных графиках какая правильная нумерация с позиции влияния водородосодержания на интенсивность замедления нейтронов в горных породах?

- A) 1 доломит, 2 песчаник, 3 известняк, 4 вода
- Б) 1 вода, 2 песчаник, 3- известняк, 4 доломит,
- В) 1 известняк, 2 песчаник, 3- доломит, 4 вода
- Γ) 1 песчаник, 2 известняк, 3 доломит, 4 вода
- 79. Какие тенденции справедливы в приведенной схеме для показателей времени жизни τ_s и длины замедления L_s нейтронов?

- A) увеличение τ_s и L_s
- Б) уменьшение τ_s и L_s
- B) увеличение τ_s и уменьшение L_s
- Γ) увеличение L_s и уменьшение T_s
- **80.** На приведенном рисунке какими материалами представлен защитный экран от прямого нейтронного излучения между источником и индикатором?

- А) парафин + воск
- Б) парафин+ сталь
- В) воск + свинец
- Г) свинец+ сталь

81. Как расшифровывается аббревиатура СНГК?

- А) скважинный нейтронный гамма-каротаж
- Б) спектрометрический нейтронный гамма-каротаж
- В) селективный нейтронный гамма-каротаж
- Г) сцинтилляционно-нейтронный гамма-каротаж

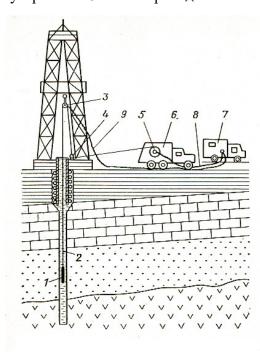
82. В чём особенность импульсного нейтронного каротажа?

- А) в более детальном изучении по сравнению с другими нейтронными методами глинистой корки в области продуктивных пластов
- Б) в использовании вместо стандартных источников нейтронов специального генератора нейтронов
 - В) в уменьшении времени регистрации каротажных диаграмм
 - Г) в увеличении времени регистрации каротажных диаграмм

83. Могут ли радиоактивные методы каротажа использоваться в интервалах обсадки?

- A) да
- Б) нет

84. Какой диапазон частот используется в акустическом каротаже?


- А) инфразвуковой
- Б) звуковой
- В) ультразвуковой
- Г) гиперзвуковой

85. Могут ли иметь зонды акустического каротажа один приёмник и два излучателя или наоборот один излучатель и два приёмника

да

- нет
- 86. В процессе акустического каротажа регистрируют параметры:
- A) только $t_{p1},\ t_{p2}$ времена первого вступления приемников и Δt интервальное время
- Б) только A_{l} , A_{2} амплитуды сигналов на приемниках в заданной точке и α коэффициент поглощения
- В) t_{p1} , t_{p2} времена первого вступления приемников, Δt интервальное время, A_l , A_2 амплитуды сигналов на приемниках в заданной точке и α коэффициент поглощения
 - Γ) только Δt интервальное время и α коэффициент поглощения
- **87.** Скважинное акустическое телевидение (CAT) специальный вид акустического каротажа (АК), предназначенный для детального исследования стенок обсаженных и необсаженных с помощью вращающегося преобразователя акустических сигналов
- 88. В методах акустической профилеметрии и кавернометрии используется принцип импульсной:
 - А) радиолокации
 - Б) эхолокации
 - В) фокусировки
 - Г) сейсмоакустики
- **89.** При каротаже приборами, транспортируемыми буровым инструментом (ТБИ), организация телесистемы забой-устье скважины предусматривает использование:
 - А) скважинных магнитных регистраторов
 - Б) цифровой регистрации
 - В) гидравлических каналов связи по буровому раствору
 - Г) всё перечисленное верно
- **90.** Какие частоты положены в основу технологии акустического каротажа в процессе бурения (АКПБ)?
 - А) частота разрушения породы 1-10 кГц
 - Б) частота колебаний колонны $\approx 10~\Gamma$ ц
 - В) частота зубцевых колебаний шарошек 100-500 Гц
 - Г) все перечисленные частоты
- 91. Методика газового каротажа предусматривает дегазацию бурового раствора на устье скважины с помощью
 - 92. Прострелочно-взрывные работы в скважинах это:
 - А) перфорация и торпедирование
 - Б) отбор проб стреляющими грунтоносами
 - В) отбор проб сверлящими грунтоносами
 - Γ) всё перечисленное верно
 - 93. Опробование пластов приборами на кабеле это:
 - А) изоляция участка отбора и создание дренажного канала
 - Б) вызов притока флюида
 - В) отбора пробы и последующее уравнивание давления
 - Г) всё перечисленное верно

- **94.** Инклинометрические измерения для изучения искривления скважин в геологическом разрезе производятся:
 - А) непрерывно в процессе поискового комплекса каротажа
 - Б) непрерывно в процессе детализационного комплекса каротажа
 - В) поточечно на устье и на забое скважины
 - Г) поточечно в заданных геологической службой интервалах скважины
 - 95. Кавернометрия это каротажный метод изучения:
 - А) глинистых корок в продуктивных пластах
 - Б) изменения диаметра скважины по её стволу
 - В) глубоких каверн в стволе скважины
 - Г) желобов и трещинных зон в стволе скважины
- **96.** Методом термометрии глубина верхней границы цементного кольца в затрубном пространстве определяется по:
 - А) уменьшению температуры бурового раствора в интервале цементации
 - Б) показателю градиента повышения температуры в процессе затвердевания цемента
- В) термодатчикам, устанавливаемых в стенках скважин с помощью сверлящих грунтоносов
 - Г) диаграммам магнитного каротажа
- **97.** Литологическое расчленение разрезов геологоразведочных скважин выполняется по:
 - А) диаграммам типового комплекса ГИС
 - Б) диаграммам поискового комплекса ГИС
 - В) диаграммам полевого комплекса ГИС
 - Г) диаграммам детализационного комплекса ГИС
- **98.** Какой комплекс методов ГИС является оптимальным при литологическом разрезе нефтегазовых скважин?
 - А) КС-ПЗ; ПС, ГК, МКЗ, КМ
 - Б) КС-ГЗ; БКЗ, ВИКИЗ, НКТ, КМ
 - Β) БΚ, ΓΚ, ΑΚ, ΓΓΚ, ΚΜ
 - Γ) ИК, ТК, Γ К, Π С, КМ
 - 99. Как называются устройства 3 и 4 на приведенной схеме производства ГИС?

- **100. Для непроницаемых пластов** какие из приведенных показателей не используются при количественной интерпретации кривых БКЗ:
- ρ_{π} УЭС пласта
- ρ_c УЭС промывающей жидкости (бурового раствора)
- L_3 длина зонда (для градиент-зондов расстояние AO или BO, а для потенциал-зондов расстояние AM)
- d_c диаметр скважины
- $\rho_{\scriptscriptstyle 3\Pi}$ УЭС зоны проникновения
- D диаметр зоны проникновения
 - А) ρ_п и ρ_с
 - Б) ρ_c и L_s
 - B) $\rho_{3\pi}$ и D
 - Γ) L_3 и D

Этап: проведение промежуточной аттестации по дисциплине Типовые вопросы к экзамену по дисциплине «Термодинамическое исследование пласта»

- 1. ТГДИП как раздел разведочной геофизики. Основные понятия и определения.
- 2. Физические поля, на которых основаны методы ТГДИП.
- 3. Геологоразведочные скважины, как объект исследования методами ТГДИП. Схема производства каротажа.
- 4. Технология геофизических исследований и работ в геологоразведочных скважинах.
- 5. Физико-геологические предпосылки применения ТГДИП в рудных, угольных и нефтегазоразведочных скважинах. Особенности строения прискважинной зоны в проницаемых пластах.
- 6. Основные понятия о телеметрической системе передачи информации в методах ТГДИП.
- 7. Электромагнитное поле в условиях скважины. Параметры поля, их взаимосвязь с электрическими свойствами геологических сред.
- 8. Обобщенная характеристика и блок-схема каротажа КС.
- 9. Устройство зонда КС, его использование в качестве осевой электроразведочной установки.
- 10. Классификация зондов КС. Принцип взаимности при регистрации каротажных кривых однополюсными и двухполюсными зондами.
- 11. Характеристика прямых и обращенных градиент-зондов КС.
- 12. Характеристика потенциал-зондов КС.
- 13. Выбор оптимальных зондов КС на месторождениях различного типа.
- 14. Форма кривых потенциал-зондов КС для пластов большой, средней и малой толщин (мощности).
- 15. Форма кривых градиент-зондов КС для пластов большой, средней и малой толщин (мощности).
- 16. Схема обработки каротажных диаграмм.
- 17. Основы геофизической интерпретации кривых каротажа КС. Теоретические (палеточные) кривые.

- 18. Основы геологической интерпретации кривых каротажа КС.
- 19. Сущность бокового каротажного (электрического) зондирования.
- 20. Первичная обработка и последующая количественная интерпретации кривых БКЗ.
- 21. Типовые формы кривых БКЗ для условий повышающего и понижающего проникновения фильтрата промывочной жидкости в продуктивный пласт.
- 22. Общие сведения о микрокаротаже методами КС.
- 23. Устройство зондов МК и блок-схема измерений.
- 24. Типовые зонды МК. Соотношение каротажных кривых МК над проницаемыми и непроницаемыми пластами в нефтегазоразведочных скважинах.
- 25. Метод резистивиметрии в геологоразведочных скважинах (форма каротажных кривых, область применения).
- 26. Блок-схемы скважинного и поверхностного резистивиметра.
- 27. Сущность и области применения токового каротажа.
- 28. Блок-схемы токового каротажа (ТК) и каротажа методом скользящих контактов (МСК). Форма каротажных кривых.
- 29. Общие сведения об электрическом каротаже с фокусированными зондами.
- 30. Сущность дивергентного каротажа и область его применения.
- 31. Схема зонда дивергентного каротажа (ДГК).
- 32. Общие сведения о боковом каротаже.
- 33. Устройство зондов бокового каротажа. Форма кривых БК.
- 34. Микрокаротаж БК. Устройство пластовых наклономеров на основе БК.
- 35. Обобщенная характеристика электромагнитных методов ГИС.
- 36. Общие сведения об индукционном каротаже (ИК). Устройство зондов ИК, их шифр.
- 37. Форма каротажных кривых ИК, их качественное истолкование.
- 38. Общие сведения и физические основы ВИКИЗ, устройство скважинного прибора.
- 39. Сущность и область применения ВИКИЗ.
- 40. Качественная интерпретация каротажных диаграмм ВИКИЗ.
- 41. Форма кривых ВИКИЗ над проницаемыми пластами.
- 42. Основы количественной интерпретации метода ВИКИЗ.
- 43. Типы кривых зондирования в методе ВИКИЗ.
- 44. Общие сведения о диэлектрическом каротаже (ДК).
- 45. Физическая сущность ДК, его отличие от ИК и ВИКИЗ.
- 46. Зонды ДК, их маркировка. Форма кривых ДК.
- 47. Общие сведения о методе ПС и Физические основы метода ПС.
- 48. Схема измерений в методе ПС, форма каротажных кривых.
- 49. Литологическое расчленение разрезов скважин методом ПС в комплексе с другими методами каротажа.
- 50. Общие сведения о методе потенциалов вызванной поляризации (ВП).
- 51. Сущность метода ВП, блок-схема измерений.
- 52. Обобщенная характеристика ядерно-физических методов ГИС.
- 53. Радиоактивное поле в скважинах. Физическая сущность естественной и наведенной радиоактивности.
- 54. Естественная радиоактивность горных пород.
- 55. Сущность метода ГК.
- 56. Устройство скважинных приборов и форма каротажных кривых. ГК.
- 57. Спектрометрическая модификация ГК.
- 58. Процесс взаимодействия гамма-квантов с веществом, как основа методов ГГК и ГГК-С.
- 59. Типы взаимодействия гамма-квантов с веществом.

- 60. Сущность плотностного гамма-гамма каротажа (ГГК).
- 61. Зонды ГГК, форма каротажных кривых.
- 62. Общие сведения о селективном гамма-гамма каротаже (ГГК-С).
- 63. Общие сведения о нейтронных методах каротажа.
- 64. Нейтронные свойства горных пород.
- 65. Процессы взаимодействия нейтронов с веществом.
- 66. Характеристика тенденции изменения времени жизни и длины замедления нейтронов в горных породах.
- 67. Обобщенная характеристика стационарных методов НК.
- 68. Применение методов НК в нефтегазоразведочных и нефтегазопромысловых скважинах.
- 69. Литологическое расчленение разрезов скважин по диаграммам НК.
- 70. Определение водонефтяного (ВНК) и газожидкостного контактов (ГЖК) по каротажным диаграммам НК.
- 71. Сущность импульсного нейтронного каротажа (ИНК).
- 72. Разновидности ИНК и область их применения.
- 73. Обобщенная характеристика сейсмоакустических методов ГИС.
- 74. Краткая теория АК. Устройство зондов АК, их обозначение. Форма кривых АК.
- 75. Многоэлементный зонд АК, вид волновых картин. Фазокорреляционные диаграммы в методе АК (ФКД).
- 76. Краткие сведения об аппаратуре и область применения АК.
- 77. Скважинное акустическое телевидение (САТ).
- 78. Акустические кавернометрия и профилеметрия.
- 79. Краткая характеристика каротажа приборами, транспортируемыми буровым инструментом (ТБИ).
- 80. Сущность и область применения газового каротажа.
- 81. Прострелочно-взрывные работы и опробование скважин в открытом стволе (перфорация, отбор образцов пород грунтоносами).
- 82. Опробование пластов приборами на кабеле (метод ОПК).
- 83. Обобщенная характеристика методов технического состояния скважин.
- 84. Метод инклинометрии (устройство скважинного прибора, построение инклинограмм).
- 85. Методы кавернометрии и профилеметрии (схемы измерений, устройство скважинных приборов, форма каротажных кривых, область применения).
- 86. Геофизический контроль качества цементирования обсадных колон в эксплуатационных нефтегазовых скважинах (методы термометрии, радиоактивного и акустического каротажа).

Для проведения **промежуточной аттестации** рабочим учебным планом предусмотрен экзамен (6 семестр), к нему допускаются обучающиеся, успешно сдавшие все формы текущего контроля, предусмотренные рабочей программой дисциплины. Экзамен оценивается по четырех балльной шкале: *«отлично», «хорошо», «удовлетворительно», «неудовлетворительно»*. Аттестационное испытание состоит из двух вопросов и задачи. Результирующая оценка формируется как средний арифметический балл из набранных баллов за выполнение теоретического и практического задания.

Критерии оценки ответа на поставленные вопросы.

Проверяемые компетенции Оценка	Критерий оценивания
--------------------------------	---------------------

ОК-6, ОК-7,		При ответе:
ОПК-1, ОПК- 3, ПК-1	Отлично	 содержание полностью раскрывает тему задания;
		- материал изложен логически последовательно;
		- убедительно доказана практическая значимость;
		- в совершенстве владеет изученным материалом;
		- задача решена полностью: приводится верное
		аналитическое решение, делается правильный расчет.
	Хорошо	При ответе:
		- содержание в целом раскрывает тему задания;
		- материал изложен последовательно;
		- доказана практическая значимость;
		- владеет изученным материалом;
		- задача решена, но есть небольшие недочеты при
		использовании законов, формул, в целом не влияющих на
		ход решения, допущены ошибки при вычислении
		численных результатов.
	Удовлетво рительно	При ответе:
		– содержание раскрывает тему задания;
		- материал изложен непоследовательно;
		- не доказана практическая значимость;
		- не в совершенстве владеет изученным материалом;
		- в решении задачи есть существенные недостатки при
		выводе аналитических выражений, не проведены
		численные расчеты.
	Неудовлет ворительн о	При ответе:
		тема задания не раскрыта;
		- материал изложен логически не корректно;
		- практическая значимость не доказана;
		- не владеет изученным материалом;
		- задача не решена.

Получение на экзамене оценки «отлично», «хорошо», «удовлетворительно» позволяет сделать вывод о достаточной сформированности компетенций ОК-6, ОК-7, ОПК-1, ОПК-3 и ПК-1.