Оценочные материалы для промежуточной аттестации по дисциплине:

Молекулярная физика и термодинамика, СЕМЕСТР 4

Код, направление подготовки	03.03.02 Физика
Направленность (профиль)	Цифровые технологии в геофизике
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра экспериментальной физики

Типовые задания для контрольной работы (4 семестр)

1 вариант

- 1. В закрытом сосуде объемом 0.5 м³ находится 0.6 моля углекислого газа пр давлении 3 МПа. Считая, что газ реальный. Определить во сколько раз надо увеличить температуру газа, чтобы давление увеличилось вдвое.
- 2. Масса водяного пара 0.5 г занимает объем 10 литров при температуре 50^0 С, какова при этом относительная влажность воздуха?

2 вариант

- 1. Некоторый газ в количестве 0.5 кмоль занимает объем 1 м^3 . При расширении газа до объема 1.2 м^3 была совершена против сил взаимодействия молекул 5.684 кДж. Найти постоянную Ван-дер-Ваальса «а».
- 2. Давление насыщенного ртутного пара при температуре 100^{0} С и 120^{0} С равны 37.3 Па и 101.3 Па. Найти удельную теплоту парообразования ртути.

3 вариант

- 1. Кислород массой 0.1 кг расширяется от объема 5 л до объема 10 л. Определите работу межмолекулярных сил притяжения при этом расширении. Постоянная **a** равна 0.136 $H\times M^4/MOJD^2$.
- 2. Температура кипения бензола (C_6H_6) при давлении 0.1 МПа равна 80.2° С. Найти давление насыщенного пара бензола при температуре 75.6° С. Теплота парообразования бензола равна 0.4 МДж/кг.

4 вариант

1. Кислород в количестве 1 моль занимающий при температуре 400 К объем 1 л, расширяется изотермически до 2 л. Определите работу при расширении и изменение внутренней энергии газа. Постоянные **a** равна $0.136~{\rm H}\times{\rm m}^4/{\rm monb}^2$, а **b** равна $3.17\times10^{-5}~{\rm m}^3/{\rm monb}$.

2. Давление воздуха внутри мыльного пузыря на 200 Па больше атмосферного давления. Атмосферное давление 10^5 Па. Поверхностное натяжение мыльного раствора $40 \mathrm{mH/m}$. Определите диаметр пузыря.

Типовые задания к экзамену по дисциплине (4 семестр)

Проведение промежуточной аттестации в 4 семестре в виде экзамена. Задания на экзамене содержат 2 теоретических вопроса и задачу.

Задание для показателя оценивания дискриптора «Знает»	Вид задания
Вариант 1	теоретический,
1. Термодинамические параметры (T, P, V). Опытны	
газовые законы	экзамену
2. Определение коэффициента поверхностного натяжени	Я.
Капельный метод и метод вращающейся капли.	
Вариант 2	
1. Энтропия. Неравенство Клаузиуса. Закон Больцмана д	Я
энтропии.	
2. Число степеней свободы. Закон распределения энерги	и
молекул. Расчет энергии молекул.	
Вариант 3	
1. Идеальный газ. Основное уравнение МКТ идеального газ	a.
Уравнение состояния идеального газа.	
2. Давление над искривленной поверхностью. Уравнен	
Лапласа. Давление над сферической и цилиндрическо	И
поверхностями.	
Вариант 4	
1. Реальные газы. Учет сил притяжения и объема молеку Уравнение Ван-дер-Ваальса.	J1.
 Работа при изменении объема газа. Внутренняя энерги 	ıa
Первое начало термодинамики.	л.
Вариант 5	
1. Распределения Больцмана и Максвелла. Барометрическая	r
формула.	•
2. Смачивание и несмачивание жидкости. Капилляри	Ы.
Высота столбика жидкости в капилляре.	
Вариант 6 1. Изотермы Ван-дер-Ваальса. Сравнение с опытным	ATI
 Изотермы Ван-дер-Ваальса. Сравнение с опытным данными. Метастабильные состояния. 	111
 Теплоемкость газа. Изохорная и изобарная теплоемкост 	YE.
Уравнение Майера.	Б.
Вариант 7	
1. Движение молекул. Средняя длина свободного пробега. 1	Ee
зависимость от температуры и давления.	
2. Плавление и кристаллизация твердого тела. Температур	oa
кристаллизации. Скрытая теплота кристаллизации.	
Вариант 8	
1. Испарение жидкости. Скрытая теплота испарени	я.
Давление насыщенного пара.	
2. Адиабатический процесс. Уравнение Пуассона. Работа пр	ОИ
адиабатическом и изотермическом процессах.	
Вариант 9	
1. Диффузия. Закон Фика. Коэффициент диффузии.	
2. Тепловое расширение твердых тел. Теплоемкость. Зако	ЭН

Дюлонга-Пти.

Вариант 10

- 1. Кипение жидкости. Образование пузырьков пара. Зависимость температуры кипения от внешнего давления.
- 2. Обратимые и необратимые процессы. Второе начало термодинамики.

Вариант 11

- 1. Теплопроводность. Закон Фурье. Коэффициент теплопроводности.
- 2. Фазовые переходы 1 и 2 рода. Примеры.

Вариант 12

- 1. Термодинамические параметры (T, P, V). Опытные газовые законы.
- 2. Поверхностное натяжение жидкости. Поверхностная энергия. Коэффициент поверхностного натяжения.

Вариант 13

- 1. Вязкость. Закон Ньютона. Коэффициент вязкости.
- 2. Тепловые двигатели и холодильные машины. Цикл Карно. Коэффициент полезного действия.

Вариант 14

- 1. Энтропия. Неравенство Клаузиуса. Закон Больцмана для энтропии.
- 2. Определение коэффициента поверхностного натяжения. Капельный метод и метод вращающейся капли.

Вариант15

- 1. Идеальный газ. Основное уравнение МКТ идеального газа. Уравнение состояния идеального газа.
- 2. Число степеней свободы. Закон распределения энергии молекул. Расчет энергии молекул.

Вариант 16

- 1. Реальные газы. Учет сил притяжения и объема молекул. Уравнение Ван-дер-Ваальса.
- 2. Давление над искривленной поверхностью. Уравнение Лапласа. Давление над сферической и цилиндрической поверхностями.

Вариант 17

- 1. Распределения Больцмана и Максвелла. Барометрическая формула.
- 2. Работа при изменении объема газа. Внутренняя энергия. Первое начало термодинамики.

Вариант18

- 1. Изотермы Ван-дер-Ваальса. Сравнение с опытными данными. Метастабильные состояния.
- 2. Смачивание и несмачивание жидкости. Капилляры. Высота столбика жидкости в капилляре.

Вариант 19

- 1. Движение молекул. Средняя длина свободного пробега. Ее зависимость от температуры и давления.
- 2. Теплоемкость газа. Изохорная и изобарная теплоемкость. Уравнение Майера.

Вариант 20

- 1. Испарение жидкости. Скрытая теплота испарения. Давление насыщенного пара.
- 2. Плавление и кристаллизация твердого тела. Температура кристаллизации. Скрытая теплота кристаллизации.

Вариант 21

- 1. Диффузия. Закон Фика. Коэффициент диффузии.
- 2. Адиабатический процесс. Уравнение Пуассона. Работа при адиабатическом и изотермическом процессах.

Вариант 22

- 1. Кипение жидкости. Образование пузырьков пара. Зависимость температуры кипения от внешнего давления.
- 2. Тепловое расширение твердых тел. Теплоемкость. Закон Дюлонга-Пти.

Вариант 23

- 1. Теплопроводность. Закон Фурье. Коэффициент теплопроводности.
- 2. Обратимые и необратимые процессы. Второе начало термодинамики.

Вариант 24

- 1. Термодинамические параметры (T, P, V). Опытные газовые законы.
- 2. Фазовые переходы 1 и 2 рода. Примеры.

Вариант 25

- 1. Вязкость. Закон Ньютона. Коэффициент вязкости.
- 2. Поверхностное натяжение жидкости. Поверхностная энергия. Коэффициент поверхностного натяжения.

Задание для показателя оценивания дискрипторов «Умеет» и Вид задания «Владеет» Вариант 1 практический, Задача. Определить плотность смеси газов водорода массой 8 г и задачи к кислорода массой 64 г при температуре 290 К и давлении 0,1 экзамену МПа. Вариант 2 Задача. В сосуде объемом 1 л находится кислород массой 1 г. определить концентрацию молекул кислорода в сосуде. Вариант 3 Задача. Определить наиболее вероятную скорость молекул газа, плотность которого при давлении 40 кПа составляет 0.35 kg/m^3 . Вариант 4 Задача. Используя функцию распределения молекул идеального газа по энергиям, найти среднюю кинетическую энергию молекул. Вариант 5 Задача. Определить отношение давления воздуха на высоте 1 км к давлению на дне скважины глубиной 1 км. Воздух у поверхности Земли находится при нормальных условиях, и его температура не зависит от высоты. Вариант 6 Задача. Определить среднюю длину свободного пробега молекул кислорода, находящегося при температуре0 ⁰C, если среднее число столкновений, испытываемых молекулой за 1 с, равно $3,7\times10^{9}$.

Задача. Определить коэффициент теплопроводности азота, находящегося в некотором объеме при температуре 280 К.

Вариант 8

Вариант 7

Задача. Определить коэффициент диффузии водорода при нормальных условиях.

Вариант 9

Задача. Ниже какого давления можно говорить о вакууме между стенками сосуда Дьюара, если расстояние между стенками равно 8 мм, а температура $17 \, ^{0}\text{C}$?

Вариант 10

Задача. Определить удельные теплоемкости смеси углекислого газа массой 3 г и азота массой 4 г.

Вариант 11

Задача. Определить количество теплоты, сообщенное газу, если в процессе изохорного нагревания кислорода объемом 20 л его давление изменилось на 100 кПа.

Вариант 12

Задача. Газ нагревается в открытом сосуде при нормальном атмосферном давлении от 27°C до 327°C. Какое приращение получит при этом число молекул в единице объема газа?

Вариант 13

Задача. В цилиндре диаметром d=20 см и высотой h=42 см с подвижным поршнем находится газ под давлением $12*10^5$ Па при температуре $t=300^{\circ}$ С. Определить работу, совершаемую газом при снижении температуры до 10° С при постоянном давлении.

Вариант 14

Задача. Вычислить среднюю длину свободного пробега молекул хлора при температуре 0° с и давлении 760 мм рт. ст. Эффективный диаметр молекулы хлора принять равным $3.5\ 10^{-10}$ м.

Вариант 15

Задача. Газ ацетон (C_3H6O) при температуре 200 °C имеет удельную теплоёмкость при постоянном давлении $Cp=1787~\rm Дж~/(кг*K)$. Определить Cp/Cv и удельный объем газа , если давление его $p=1,8*100000~\rm Ha$.

Вариант 16

Задача. В сосуде объемом 2,0 дм³ находится газ под давлением 0,50 МПа. Чему равна средняя кинетическая энергия поступательного движения молекул газа?

Вариант 17

Задача. Определить работу расширения 7 кг водорода при постоянном давлении и количество теплоты, переданное водороду, если в процессе нагревания температура газа повысилась на 200 градусов.

Вариант 18

Задача. Найти среднюю длину свободного пробега молекул воздуха при температуре 20° С и давлении $1,5\ 10^{5}$ па. Эффективный диаметр молекул воздуха принять равным $0,3\ 10^{-9}$ м.

Вариант 19

Задача. При нормальных физических условиях некоторый газ имеет удельный объем V = 0.348 куб.м./кг. Определить, чему равны удельные теплоемкости Ср и СV.

Вариант 20

Задача. Плотность газа при давлении 0,20 МПа и температуре 7°C равна 2,41 кг/м³. Какова масса 1 моль этого газа?

Вариант 21

Задача. При изобарическом сжатии азота была совершена

работа, равная 12 кДж. Определить затраченное количество теплоты и изменение внутренней энергии газа.

Вариант 22

Задача. При температуре t=207° C 2,5 кг некоторого газа занимают объём 0,8 куб. м. Определить давление газа , если удельная теплоёмкость Cp = 519 Дж/(кг*К) и γ =1,67 ..

Вариант 23

Задача. Найти объем смеси, состоящей из азота массой 2,8 кг и кислорода массой 3,2 кг и имеющей температуру 17° С и давление 0,40 МПа.

Вариант 24

Задача. При изотермическом сжатии 2,8 кг окиси углерода объем его уменьшился в 4 раза. Определить работу сжатия, если температура газа 7°C.

Вариант 25

Задача. В сосуде объемом 1 дм 3 содержится некоторый газ при температуре 17 $^{\circ}$ С. Найти приращение давления газа, если вследствие утечки газа из него выйдет 10^{32} молекул.