Тестовое задание для диагностического тестирования по дисциплине:

Дифференциальные уравнения, 4 семестр

Код, направление подготовки	09.03.02 ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ
Направленность (профиль)	Безопасность информационных систем и технологий
Форма обучения	Очная
Кафедра-разработчик Информатики и вычислительной техники	
Выпускающая кафедра	Информатики и вычислительной техники

Проверяема я компетенци я ОПК-1	Задание Укажите функцию, являющуюся решением уравнения $ydy = \frac{dx}{2(x+1)}$	Варианты ответов 1. $y = e^x$ 2. $y = 2$ 3. $y = \frac{1}{x+1}$ 4. $y = \sqrt{\ln(x+1)}$	Тип сложност и вопроса низкий	Кол-во баллов за правильны й ответ
ОПК-1	Среди перечисленных дифференциальных уравнений уравнениями первого порядка являются	4. $y = \sqrt{\ln(x+1)}$ 1. $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = 0$ 2. $y\frac{\partial z}{\partial x} + x = 0$ 3. $x\frac{d^2y}{dx^2} + xy\frac{dy}{dx} + x^2 = y$ 4. $y' = \frac{y^2 - x}{2y(x+1)}$	низкий	2
ОПК-1	Укажите вид частного решения неоднородного дифференциального уравнения $y'' + 6y' = 5x$.	1. $y = (Ax + B)x$ 2. $y = (Ax + B)e^{\frac{2}{3}x}$ 3. $y = Ax + B$ 4. $y = Ax$	низкий	2
ОПК-1	Из перечисленных систем дифференциальных уравнений однородными системами являются	1. $\begin{cases} x' = x - y \\ y' = x + y + e^t \end{cases}$ 2. $\begin{cases} x' = y \\ y' = x + y \end{cases}$ 3. $\begin{cases} x' = 2x + 5y \\ y' = 4x - 2y \end{cases}$ 4. $\begin{cases} x' = 3x - 2y + t \\ y' = 3x - 4y \end{cases}$	низкий	2

ОПК-1	Для дифференциального уравнения $y' = 2xy + y^4$ определите способ решения	1. разделение переменных, затем интегрирование $\frac{y}{x} = t(x)$ 2. подстановка $x = u(x)v(x)$ 3. подстановка $x = u(x)v(x)$ 4. подстановка $x = u(x)v(x)$	низкий	2
ОПК-1	Решениями уравнения $y'' = 2(x+1) + e^x$ являются функции	1. $y = \frac{(x+1)^3}{3} + e^x + C_1 x + C_2$ 2. $y = (x+1)^3 + e^x + C_1 x + C_2$ 3. $y = x^3 + x^2 + e^x + C_1 x + C_2$ 4. $y = \frac{x^3}{3} + x^2 + e^x + C_1 x + C_2$	средний	5
ОПК-1	Укажите уравнения, решения которых можно найти с помощью метода вариации произвольных постоянных	1. $y'' - 4y' + 3y = e^{5x^2}$ 2. $y'' - 9y' + 20y = x^7 \cos^2 x$ 3. $2y'' - y' + 3 = 0$ 4. $y'' + y' = 0$	средний	5
ОПК-1	Фундаментальная система решений уравнения $y'' + 4y' + 20y = 0$ имеет вид	1. $y_1 = \cos 4x$, $y_2 = \sin 4x$ 2. $y_1 = e^{-2x} \cos 4x$, $y_2 = e^{-2x} \sin 4x$ 3. $y_1 = e^{-2x}$, $y_2 = e^{2x}$ 4. $y_1 = e^{-2x}$, $y_2 = 1$	средний	5
ОПК-1	По методу вариации произвольных постоянных частное решение неоднородного уравнения $y'' - y' - 6y = xe^x$ следует искать в виде	1. $y = C_1(x)e^{3x} + C_2(x)e^{-3x}$ 2. $y = C_1(x)e^{3x} + C_2(x)e^{-2x}$ 3. $y = e^{-2x}(C_1(x) + xC_2(x))$ 4. $y = e^{3x}(C_1(x)\cos x + C_2(x)\sin x)$	средний	5
ОПК-1	Среди перечисленных обыкновенных дифференциальных уравнений линейными уравнениями являются	1. $y' - \frac{y}{x} = tgx$ 2. $(y'')^2 = y'$ 3. $y' = \frac{y+1}{x}$ 4. $xy'' + 5y' + y = 0$	средний	5
ОПК-1	Функция $y = C_1 \cos x + C_2 \sin x + \frac{1}{2}e^x$ является общим решением дифференциального уравнения	1. $y'' + y = e^{x}$ 2. $y' + y = e^{x}$ 3. $y'' + y = 0$ 4. $y'' + 2y' + y = e^{x}$	средний	5

ОПК-1	Частное решение	$1. y_u = A\cos 2x + B\sin 2x$	средний	5
	линейного	$2. y_{y} = A\cos x + B\sin x$	_	
	дифференциального уравнения	$3. y_{u} = Ax + B$		
	$y'' + 5y' + 6y = \sin 2x$	$4. y_y = Ax^2$		
	имеет вид	y _q 1100		
ОПК-1	Определите способ	1. последовательное	средний	5
	решения	интегрирование обеих		
	дифференциального уравнения второго	частей уравнения 2. подстановка		
	3yy' - 7y'' = 0	y' = z(x), y'' = z'(x)		
	порядки	3. подстановка		
		$y' = p(y), y'' = p \frac{dp}{dy}$		
		dy		
	Среди перечисленных	1. $(x^2 + y^2)y' + 2x(y + 2x) = 0$	средний	5
	дифференциальных уравнений уравнениями	$\int_{2}^{\infty} (\ln y - 2x) dx + \left(\frac{x}{y} - 2y\right) dy = 0$		
	в полных дифференциалах			
	являются	$\int_{3.} \cos^2 y dx - (x^2 + 1) dy = 0$		
		$y' + \frac{y}{x} = 2 \ln x + 1$		
		4. "		
	Частное решение	$1. y_{u} = Ax^{2} + Bx + C$	средний	5
	линейного дифференциального	$2. y_{4} = Ae^{x}$		
	уравнения	$\int_{3}^{2.5} y_{u} = (Ax + B)x$		
	$y'' + y' + 2y = x^2$	$\begin{vmatrix} 3.74 \\ 4. y_4 = Ax^2 \end{vmatrix}$		
	имеет вид	$4.$ $y_q = 11x$		
	Решите систему		высокий	8
,	дифференциальных			
	$\begin{cases} x' = 7x + 3y \\ y' = x + 5y \end{cases}$			
OTTA 1	уравнении			0
1 '	Дано дифференциальное		высокий	8
	уравнение третьего			
	9y''' - y' = 0.			
	Корнями его			
	характеристического			
	уравнения являются			
	Решите задачу Коши		высокий	8
	$y' = 2e^{-2y}, y\left(\frac{1}{4}\right) = 0$			
	(e)			
	ответе укажите $y(\frac{1}{4})$.			
ОПК-1	Укажите, при каком		высокий	8
	значении C функция			
1	$y = x^3$ является		1	

	решением уравнения $y' = Cx^2$.		
ОПК-1	Решите дифференциальное уравнение $xy' - y + x\cos^2\frac{y}{x} = 0$	высокий	8