Оценочные материалы для промежуточной аттестации по дисциплине

Основы электротехники

Код, направление	09.03.04. ПРОГРАММНАЯ ИНЖЕНЕРИЯ					
подготовки						
Направленность	Программное обеспечение компьютерных систем					
(профиль)						
Форма обучения	Заочная					
Кафедра-	Радиоэлектроники и электроэнергетики					
разработчик						
Выпускающая	Автоматики и компьютерных систем					
кафедра						

Типовые задания для контрольной работы (3 курс):

Задача 1. Расчет разветвленной цепи постоянного тока

Для электрической цепи, соответствующей номеру варианта, выполнить следующее:

- 1. Написать уравнения по законам Кирхгофа (решать полученную систему не требуется).
 - 2. Выполнить расчет токов во всех ветвях методом контурных токов.
 - 3. Составить и проверить баланс мощностей.
 - 4. Построить потенциальную диаграмму для внешнего контура.
- 5. Определить ток в одной из ветвей (по своему выбору) по методу эквивалентного генератора. Определение токов в цепи после размыкания выбранной ветви выполнить методом узловых потенциалов.

Исходные данные приведены в табл. 1, схемы показаны на рис. 1. ЭДС источников даны в Вольтах, сопротивления – в Омах.

Исходные данные

Таблица 1

Nº CIBOKH	E_1	E_2	E_3	E_4	E_5	E_6	R_1	R_2	R_3	R_4	R_5	R_6
1	40	20	70	50	60	30	5	8	15	4	6	9
2	20	20	60	60	75	40	80	90	6	12	8	15
3	90	100	30	75	50	120	15	12	6	8	10	14
4	60	50	70	80	100	40	25	10	12	6	20	8

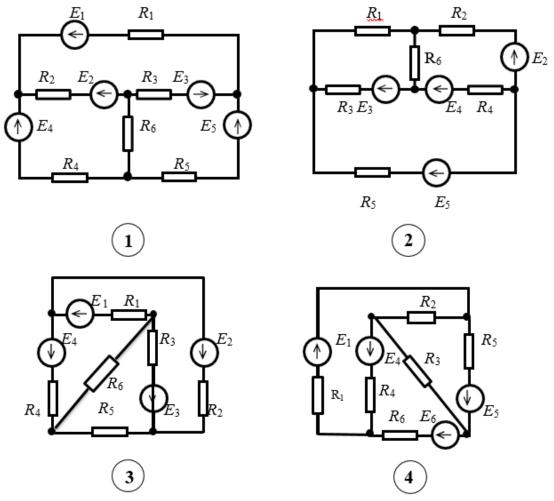


Рис. 1. Схемы к задаче 1

Задача 2. Расчет линейной электрической цепи однофазного синусоидального тока символическим методом

Заданы параметры цепи и напряжение на входе цепи $u=U_{\rm m}\sin(\omega\ t+\varphi)$. Требуется:

- 1. Определить токи и напряжения на всех участках цепи символическим способом.
- 2. Записать выражения для мгновенных значений всех токов и напряжений.
- 3. Составить и рассчитать баланс активных и реактивных мощностей.
- 4. Построить векторную диаграмму токов и напряжений. Числовые данные приведены в табл. 2, схемы показаны на рис. 2.

Исходные данные

Таблица 2

№	R_1	L_1	C_1	R_2	L_2	C_2	R_3	L_3	C_3	U_{m}	ψ_u	f
строки	QM	МГн	₩Ф	Q _M	мГн	₩Ф	Qм	мГн	мкФ	В	рад	ŗï
2	12	70	500	18	30	125	10	50	450	250 v2	π/6	50
3	15	25	125	12	80	500	8	10	200	50 1/2	$\pi/4$	50
4	10	60	600	16	15	150	12	75	400	300 v2	π/3	50

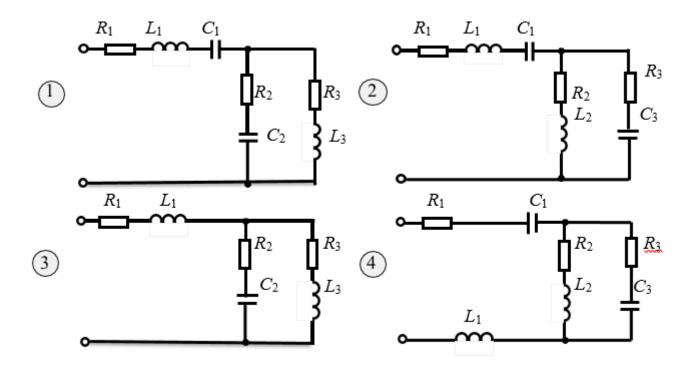


Рис.2. Схемы к задаче 2

Типовые вопросы к зачету:

3 курс

- 1. Понятия электрических цепей (ток, электрическая цепь, напряжение, электрический потенциал, мощность, энергия). Линейные пассивные и активные элементы (элементы цепи, источники, приемники). Условие эквивалентности источника ЭДС и источника тока.
- 2. Электрическая цепь и ее структурные, принципиальные и эквивалентные схемы. Схемы замещения. Основные понятия топологии схем: узел, ветвь, контур. Идеализированные элементы электрических цепей (резистивный, индуктивный, емкостной).
- 3. Закон Ома для участка цепи (сила тока, согласованное и встречное включение), обобщенный закон Ома. 1 и 2 законы Кирхгофа. Потенциальная диаграмма
- 4. Теоремы цепей. Теорема замещения. Теорема об активном двухполюснике. Теорема об эквивалентном источнике тока и напряжения. Расчет цепей методом эквивалентного источника напряжения и тока.
- 5. Принцип эквивалентности. Эквивалентные преобразования электрических цепей.
- 6. Расчет цепей методом обобщенного закона Ома. Расчет цепей методом уравнений Кирхгофа.
- 7. Принцип суперпозиции. Расчет цепей методом наложения
- 8. Расчет цепей методом контурных токов
- 9. Расчет цепей методом узловых потенциалов

- 10. Параметры гармонических функций. Мгновенное значение, амплитуда, фаза, частота, угловая частота, начальная фаза. Действующее значение, среднее и средневыпрямленное значение и коэффициент формы. Линейные операции над гармоническими функциями. Способы описания гармонических функций
- 11. Представление синусоидальных ЭДС, напряжений и токов комплексными числами
- 12. Гармонические колебания в пассивных элементах электрических цепей (R, L,C).
- 13. Энергетические соотношения в электрических цепях. Мощность в цепи гармонического тока: мгновенная, активная, реактивная, полная, комплексная. Баланс мощностей
- 14. Законы электрических цепей для комплексных действующих значений. Изображение комплексных напряжений на плоскости. Метод комплексных амплитуд. Законы Ома и Кирхгофа в комплексной форме. Топографическая диаграмма напряжений.
- 15. Анализ простых линейных цепей при гармоническом воздействии (RC, RL). Треугольник сопротивлений. Векторные диаграммы напряжений и токов
- 16. Анализ простых линейных цепей при гармоническом воздействии (последовательная RLC). Понятие резонанса напряжений.
- 17. Анализ простых линейных цепей при гармоническом воздействии (параллельная RLC). Понятие резонанса токов.
- 18. Резонанс в параллельном RLC контуре. Логарифмические частотные характеристики.
- 19. Частотные характеристики RLC электрических цепей (характеристическое сопротивление, добротность, затухание, полоса пропускания, граничные частоты, расстройки).
- 20. Комплексные передаточные функции линейных электрических цепей.
- 21. Способы повышения коэффициента мощности. Согласование источника энергии с нагрузкой.
- 22. Электрические цепи с магнитными связями (связанные катушки, взаимоиндукция, поток рассеяния, поток самоиндукции, полный поток, согласное и встречное включение, коэффициент связи).
- 23. Расчет разветвленной цепи при наличии взаимной индуктивности. Эквивалентная замена индуктивных связей
- 24. Воздушный трансформатор. Уравнения. Схема замещения
- 25. Баланс мощности в цепях с индуктивно связанными контурами
- 26. Четырехполюсники. Основные определения и классификация.
- 27. Системы уравнений четырехполюсников. Уравнения передачи четырехполюсника.
- 28. Характеристические параметры четырехполюсника