Тестовое задание для диагностического тестирования по дисциплине:

Математический анализ 1-2 семестры

Код, направление подготовки	27.03.04 Управление в технических	
	системах	
Направленность (профиль)	Инженерия автоматизированных, информационных и робототехнических систе	
Форма обучения	Очная	
Кафедра-разработчик	Прикладная математика	
Выпускающая кафедра	Автоматики и компьютерных систем	

Диагностический тест по дисциплине «Математический анализ» за первый семестр

Проверяемые	Задание	Варианты ответов	Тип
компетенции			сложности
ОПК-3.1, ОПК-	1 1	$ 1) x-a \le b;$	высокий
1.1	числовой оси, удаленных от числа a на расстояние, не превосходящее b , можно описать выражением	2) x-a < b;	
		$3) x-a \ge b;$	
		$ 4) x-b \le a;$	
		$5) -b \le x + a \le b.$	
ОПК-3.1, ОПК- 1.1	2. Определить точку минимума функции $y=f(x)$, при условии, что $f'(x)=(3+x)(x+1)$.	_	высокий
ОПК-3.1, ОПК-	3. Указать интегралы, которые вычисляются методом	1) $\int x \cos x dx$;	низкий
1.1	интегрирования по частям.	2) $\int x \arctan x dx$;	
		$3) \int x \cos x^2 dx;$	
		$4)\int x e^{x^2} dx;$	
		$\int \int x e^x dx ;$	
		$6)\int x^3 dx$.	
ОПК-3.1, ОПК-	4. Выбрать несколько вариантов ответов. Пусть a, b –	1) -a = a ;	низкий
1.1	вещественные числа. Указать верные утверждения.	2) $ a \le b$ равносильно $-a \le b \le a$;	
		$ 3) a+b \ge a + b ;$	
		$ 4) a-b \le a - b ;$	
		$5) (a+b)^2 = a^2 + b^2.$	
		$6) \sqrt{a+b} = \sqrt{a} + \sqrt{b}$	

ОПК-3.1, ОПК- 1.1	5. Выбрать один правильный ответ. Первообразной для функции $y = 3x^2$ является функция	1) $g(x) = x^3 + 1$; 2) $g(x) = x^2$; 3) $g(x) = 6x^2 + 2$; 4) $g(x) = x^3 + C$, где C – произвольная постоянная.	средний
ОПК-3.1, ОПК- 1.1	6. Выбрать один правильный ответ. Неопределенным интегралом для функции $y = 4x^3$ является функция	1) $g(x) = x^3$; 2) $g(x) = x^4 + 1$; 3) $g(x) = 12x^3 + 3$; 4) $g(x) = x^4 + C$, где C – произвольная постоянная; 5) $g(x) = x^4$.	средний
ОПК-3.1, ОПК-1.1	7. Выбрать один правильный ответ. Неопределённый интеграл от функции $y = f(x)$ на отрезке [a; b] — это	1) Множество всех первообразных; 2) Какая-либо первообразная; 3) Площадь криволинейной трапеции; 4) Предел интегральных сумм, не зависящий ни от способа разбиения отрезка, ни от выбора точек, принадлежащих этому отрезку.	средний
ОПК-3.1, ОПК- 1.1	8. Выбрать несколько вариантов ответа. Необходимым условием существования экстремума в точке x_0 для функции $y = f(x)$ является	1) равенство нулю производной в точке $x=x_0$; 2) $f''(x_0) < 0$; 3) $f''(x_0) > 0$; 4) отсутствие производной у функции $y=f(x)$ в точке $x=x_0$; 5) $f'(x_0-0) < 0$ и $f'(x_0+0) > 0$; 6) $f'(x_0-0) > 0$ и $f'(x_0+0) < 0$.	средний
ОПК-3.1, ОПК- 1.1	9. Выбрать один правильный ответ. Угловой коэффициент касательной к графику функции в некоторой точке равен	1) Значению производной функции в этой точке;	средний

		2) Отношению значения функции к отношению аргумента в этой точке;	
		3) Значению дифференциала в этой точке;	
		4) Значению тангенса производной в этой	
		точке.	
ОПК-3.1, ОПК- 1.1	10. Выбрать из списка показательную функцию.	1) $y = x^{\alpha}$;	средний
1.1		2) $y = x^{-x}$;	
		$3) y = x^x;$	
		4) $y = \alpha^x$.	
ОПК-3.1, ОПК-	11. Пусть функции $f(x)$ и $g(x)$ – четные, а функции $u(x)$ и $v(x)$	1) $w(x) = f(x) \cdot g(x)$;	низкий
1.1	– нечетные. Выберите из списка четные функции.	$2) \ w(x) = f(x) \cdot u(x);$	
		3) $w(x) = u(x) \cdot v(x)$;	
		4) $w(x) = f(x) \cdot g(x) \cdot v(x)$.	
ОПК-3.1, ОПК-	12. Дана производная $f'(x) = x^2 + 2x - 3$ функции $f(x)$. Тогда	_	высокий
1.1	функция имеет точку перегиба $x =$		
ОПК-3.1, ОПК-	13. Выбрать один правильный ответ. Экстремумом функции	1) Точка минимума или максимума;	высокий
1.1	называется	2) Наибольшее или наименьшее	
		значение функции;	
		3) Точка минимума;	
		4) Точка максимума.	
ОПК-3.1, ОПК- 1.1	14. Указать обратную функцию для функции $y=x^2$ на все	$1) \ y(x) = \sqrt{x} \ ;$	средний
1.1	числовой оси.	$2) \ y(x) = -\sqrt{x} ;$	
		3) $y(x) = \frac{1}{x^2}$;	
		4) Не имеет обратной.	
ОПК-3.1, ОПК-	15. Выбрать один правильный ответ. Пусть пластина имеет	1) площадь пластины;	низкий
1.1	форму прямоугольника, у которого расстояние между	2) среднее расстояние между	
	верхним и нижнем основаниями равно $f(x)$, где x – точка	основаниями;	
		3) длину верхнего основания;	

	нижнего основания. Тогда выражение $\int_0^a f(x)dx$, где а – длина	4) ее массу.	
ОПК-3.1, ОПК-1.1	нижнего основания определяет 16. Выбрать несколько вариантов ответа. Достаточным условием существования максимума функции $y = f(x)$ в точке $x = x_0$ является	1) равенство нулю производной в точке $x = x_0$; 2) равенство нулю производной в точке $x = x_0$ и $f''(x_0) < 0$; 3) $f''(x_0) > 0$; 4) отсутствие производной у функции $y = f(x)$ в точке $x = x_0$; 5) $f'(x_0 - 0) < 0$ и $f'(x_0 + 0) > 0$; 6) равенство нулю производной в точке $x = x_0$ или ее отсутствие, а также $f'(x_0 - 0) > 0$ и $f'(x_0 + 0) < 0$.	низкий
ОПК-3.1, ОПК-1.1	17. Выбрать один вариант ответа. На рисунке приращению функции $y = f(x)$ в точке x соответствует отрезок	1) TK: 2) MN; 3) MK; 4) NK.	средний
ОПК-3.1, ОПК- 1.1	18. Выбрать номер рисунка, советующего возрастающей и выпуклой вверх функции на отрезке $[a;b]$.	1) Первый: 2) Второй; 3) Третий; 4) Четвертый.	средний

ОПК-3.1, ОПК- 1.1	19. Выбрать один вариант ответа. Дифференциалу функции $y = f(x)$ в точке x соответствует отрезок	Варианты ответа: 1) ТК: 2) MN; 3) MK; 4) NK.	средний
ОПК-3.1, ОПК- 1.1	20. Пусть первообразной функции $y = f(x)$ является функция $g(x) = 3x^2 + 1$. Вычислить $\int_{1}^{2} f(x) dx$.	_	высокий

Диагностический тест по дисциплине «Математический анализ» за второй семестр

Проверяемые	Задание	Варианты ответа	Тип
компетенции			сложности
ОПК-3.1, ОПК- 1.1	1. Выбрать один правильный ответ. Пусть дан числовой ряд $\sum_{n=1}^{\infty} a_n$, его	1) $\sum_{k=1}^{n} a_k$;	низкий
	<i>n</i> -ой частичной суммой называется выражение	1) $\sum_{k=1}^{n} a_k$; 2) $\sum_{k=2}^{n+1} a_k$;	
		a_n ;	
		4) $a_n \cdot n$.	
ОПК-3.1, ОПК-	2. Определить формулу общего члена ряда $1+2+3++n+$	1) Сходится;	низкий
1.1	Сходится или расходится данный ряд? Выбрать верные ответы.	2) Расходится;	
		3) n; 4) n+1;	
		$5) (n+1)\frac{n}{2}.$	
ОПК-3.1, ОПК- 1.1	3. Выбрать один правильный ответ. Ряд, соответствующий геометрической прогрессии, имеет вид	$1) \sum_{n=1}^{\infty} q^n$, для некоторого числа	средний
		q;	
		$\sum_{n=1}^{\infty} \left(a_1 + nd\right)$ для	
		некоторого числа d ;	
		3) $\sum_{n=1}^{\infty} \frac{1-q^n}{1-q}$, для некоторого	
		числа q ;	
		4) $\sum_{n=1}^{\infty} n^q$, для некоторого числа	
		q.	
ОПК-3.1, ОПК- 1.1	4. Выбрать один правильный ответ. Ряд называется сходящимся, если	1) он имеет сумму;	средний
1.1	···		

		2) сходится последовательность	
		его частичных сумм;	
		3) его сумма равна	
		рациональному числу;	
		4) любой ряд сходится.	
ОПК-3.1, ОПК- 1.1	5. Пусть ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ сходятся. Выбрать единственное ложное	1) ряд $\sum_{n=k}^{\infty} a_n$ для некоторого	средний
	утверждение.	натурального числа k тоже	
		сходится;	
		2) ряд $\sum_{n=1}^{\infty} ca_n$ для некоторого	
		вещественного числа с тоже	
		сходится;	
		3) ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ сходится;	
		4) ряд $\sum_{n=1}^{\infty} \frac{a_n}{b_n}$ сходится.	
ОПК-3.1, ОПК-		1) необходимый признак	средний
1.1	6. Выбрать один правильный ответ. Пусть дан ряд $\sum a_n$. Если	сходимости;	•
	n=1	2) признак Даламбера;	
	выполнено соотношение $\lim_{n\to\infty} a_n = 0$. то говорят, что выполнен	3) радикальный признак Коши;	
		4) Интегральный признак	
		Коши.	
ОПК-3.1, ОПК-	ν Σ Σ Σ	1) необходимый признак	низкий
1.1	7. Выбрать один правильный ответ. Пусть дан ряд $\sum_{i=1}^{\infty} a_{i}$. Если	сходимости;	
	n=1	2) признак Даламбера;	
	выполнено соотношение $\lim_{n\to\infty}\sqrt{a_n}<1$. то говорят, что выполнен	3) радикальный признак Коши;	
		4) Интегральный признак	
		Коши.	

ОПК-3.1, ОПК- 1.1	8. Выбрать один правильный ответ. Пусть дан ряд $\sum_{n=1}^{\infty} a_n$ и для него	1) Ряд сходится; 2) Ряд расходится;	низкий
	$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=1 \ .$ Тогда справедливо утверждение	3) Ряд может как сходится, так и расходится, необходимы дополнительные исследования; 4) для определения сходимости	
		ряда достаточно проверить необходимый признак сходимости	
ОПК-3.1, ОПК- 1.1	9. Выбрать один правильный ответ. Ряд $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_9)^n$ называется для функции $y = f(x)$ в точке x_0 .	1) рядом Тейлора; 2) рядом Маклорена; 3) степенным рядом; 4) функциональным рядом.	средний
ОПК-3.1, ОПК-1.1	10. Выбрать один правильный ответ. Если число R является радиусом сходимости степенного ряда $\sum_{n=1}^{\infty} a_n x^n$, то интервал сходимости ряда имеет вид	1) (-R;R);	средний
ОПК-3.1, ОПК- 1.1	11. Выбрать один правильный ответ. Если известно, что число R является радиусом сходимости степенного ряда $\sum_{n=1}^{\infty} a_n x^n$ и ряд сходится на правом конце интервала сходимости, но не на левом, то область сходимости ряда имеет вид	, (,),	низкий
ОПК-3.1, ОПК- 1.1	12. Вставить пропущенное слово.	_	средний

	Функция $f(x,y)$ имеет в точке $M_0(x_0,y_0)$, если неравенство $f(x_0,y_0) > f(x,y)$ имеет место во всех точках $M(x,y) \neq M_0$ из некоторой достаточно малой окрестности точки M_0 .		
ОПК-3.1, ОПК- 1.1	13. Вставить пропущенное слово. Функция $f(x,y)$ имеет в точке $M_0(x_0,y_0)$, если неравенство $f(x_0,y_0)\!<\!f(x,y)$ имеет место во всех точках $M(x,y)\!\neq\!M_0$ из некоторой достаточно малой окрестности точки M_0 .		высокий
ОПК-3.1, ОПК- 1.1	14. Выбрать один правильный ответ. Пусть функция дифференцируема в точке (x_0, y_0) и в этой точке выполняется условие $df(x_0, y_0) = 0$. Это означает, что выполняется	1) необходимое условие существования экстремума; 2) достаточное условие существования максимума; 3) достаточное условие существования минимума; 4) условие разложения функции в ряд Тейлора в точке (x_0, y_0) .	высокий
ОПК-3.1, ОПК- 1.1	15. Вставить пропущенное слово. Задачу на поиск условного экстремума функции $f(x,y)$ двух переменных при условии $\phi(x,y)=0$ можно свести к задаче на поиск безусловного экстремума для функции трех переменных $F(x,y,\lambda)=f(x,y)+\lambda\phi(x,y)$. Эта функция называется функцией	_	средний
ОПК-3.1, ОПК- 1.1	16. Выбрать один правильный ответ. Пусть тонкая пластина занимает область D и имеет плотность равную $f(x,y)$ в каждой точке (x,y) области D . Тогда выражение $\iint_D f(x,y) dxdy$ соответствует ее	1) массе; 2) объему; 3) площади области <i>D</i> ; 4) высоте.	средний
ОПК-3.1, ОПК- 1.1	17. Выбрать один правильный ответ. Пусть аквариум имеет форму прямоугольного параллелепипеда, у которого расстояние между верхней и нижней крышками равно $f(x,y)$, где (x,y) – координаты	1) массе; 2) объему; 3) площади области <i>D</i> ;	средний

	точки дна аквариума (область D). Тогда выражение $\iint\limits_D f(x,y) dx dy$	4) высоте.	
	соответствует ее		
ОПК-3.1, ОПК- 1.1	18. Выбрать один правильный ответ. Пусть резервуар с неоднородной жидкостью заполняет объем V . Жидкость имеет плотность равную	1) массе жидкости в резервуаре;	высокий
	f(x,y,z) в каждой точке (x,y,z) области V . Тогда выражение	2) объему жидкости в	
	$\iiint f(x,y,z) dx dy dz \text{ соответствует } \dots$	резервуаре;	
	$\iiint_V (x, y, z) u x u y u z $	3) значению средней	
		плотности жидкости в	
		резервуаре;	
		4) массе резервуара вместе с	
		жидкостью.	
ОПК-3.1, ОПК-	19. Выбрать один правильный ответ. Пусть (x, y) декартовы	1) полярными;	высокий
1.1	координаты некоторой точки на плоскости, а (r, φ) ее координаты в	2) цилиндрическим;	
	новой системе координат, связанные соотношениями $x = r \cos \varphi$,	3) сферическими;	
	·	4) новыми декартовыми.	
	$y = r \sin \varphi$. Координаты (r, φ) называются координатами.		
ОПК-3.1, ОПК-	20. Выбрать один правильный ответ. Пусть (x, y, z) декартовы	1) полярными;	высокий
1.1	координаты некоторой точки в пространстве, а (r, θ, ϕ) ее координаты в	2) цилиндрическим;	
	новой системе координат, связанные соотношениями $x = r \cos \phi \sin \theta$,	3) сферическими;	
	-	4) новыми декартовыми.	
	$y = r \sin \varphi \sin \theta$, $z = r \cos \theta$. Координаты (r, θ, φ) называются		
	координатами.		