Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Мио пеночные материалы для промежуточной аттестации по дисциплине

Должность: ректор

Дата подписания: 06.06.2024 06:44:13 Уникальный программный ключ:

еза68f3eaa1e62674b54f4998099d3d6bfdcf836 Основы математического моделирования

Квалификация	бакалавр	
выпускника		
Направление	01.03.02	
подготовки	п 1	
	«Прикладная математика и информатика»	
Направленность	«Прикладная математика и информатика»	
(профиль)		
Форма обучения	очная	
Vadauna	Прикладной математики	
Кафедра- разработчик	прикладнои математики	
Выпускающая	Прикладной математики	
кафедра		

Типовые задания для контрольной работы.

Контрольная работа №1

Вариант 1.

1. Записать уравнения движения механической системы с лагранжианом L.

$$L = \frac{1}{2} \sum_{i=1}^{n} a_i \dot{q}_i^2 - \sum_{i=1}^{n} \frac{q_i + \dot{q}_i t}{\cos^2 q_i t} \quad (a_i = \text{const})$$

- 2. Найти векторный потенциал индукции магнитного поля $\mathbf{B} = (y+z)\mathbf{i} + (x+z)\mathbf{j} + (x+y)\mathbf{k}$.
- 3. Построить математическую модель свободно падающего тела, учитывающую вращение Земли.

Вариант 2.

1. Найти закон движения частицы с гамильтонианом H.

$$H(x, p) = A\sqrt{p} - xF$$
.

- 2. Найти векторный потенциал индукции магнитного поля $\mathbf{B} = 2y\mathbf{i} z\mathbf{j} + 2x\mathbf{k}$.
- 3. Построить математическую модель стационарного магнитного поля в вакууме вне шара радиуса R, пренебрегая токами смещения.

Контрольная работа №2

Учебный научно-исследовательский проект:

Учебный научно-исследовательский проект направлен на формирование у обучающихся умений и навыков собирать и обрабатывать научно-техническую информацию с использованием существующих информационно- коммуникационных технологий; анализировать и обобщать результаты и опыт передовых математического исследований области моделирования; понимать анализировать цели и задачи научно-исследовательской работы, проводить научно-исследовательские разработки по отдельным разделам темы проекта, для выполнения которых требуется применение методов математического моделирования; составлять отчеты по результатам исследований и разработок, оценивать полученные результаты.

Основные этапы работы по выполнению учебного проекта и разделы отчета по научно-исследовательскому проекту

- 1. **Цели и задачи проекта.** В данном разделе должна быть ясно и четко сформулирована цель проекта, а также задачи, которые необходимо выполнить для достижения поставленной цели.
- 2. **Актуальность.** Обучающийся должен обосновать актуальность и перспективность выбранной темы. Необходимо перечислить современные прикладные и научно-исследовательские задачи, связанные с тематикой проекта.
- 3. **Краткий обзор литературы.** Обучающийся должен найти и ознакомиться с научной литературой по тематике проекта (5 статей из русскоязычных или зарубежных научных журналов). Необходимо описать каждую из статей, особо отметив при этом цели работ, использованные методы и результаты, полученные авторами. При поиске статей следует отдавать предпочтение более новым публикациям (за последние 5лет).
- 4. Постановка задачи и математическая модель. Обучающийся формулирует постановку задачи и приводит используемые математические модели. Если тема проекта подразумевает построение математических моделей, их анализ или получение аналитического решения, то необходимо привести вывод соответствующих формул и уравнений.
- 5. **Численные методы.** Данный раздел должен содержать описание и формулировку основных численных методов, используемых для численного решения задачи.
- 6. **Тестовые расчеты. Вычислительные эксперименты.** В данном разделе обучающийся должен привести результаты тестовых расчетов, демонстрирующих корректность численного решения. В качестве тестов следует использовать задачи с известными аналитическими решениями. Далее обучающийся должен привести и прокомментировать результаты проведенных вычислительных экспериментов. Необходимо привести значения абсолютной и относительной ошибок для тестовых расчетов, а также рисунки, иллюстрирующие решение (например, изоповерхности, изолинии, распределения скалярных полей, графики, диаграммы и т. д.).
- 7. Заключение. Необходимо перечислить основные результаты, полученные в ходе работы над проектом. Данный раздел должен описывать, что было сделано при выполнении проекта и были ли достигнуты поставленные цели.
- 8. Список литературы. Список литературы должен быть оформлен согласно ГОСТ «Библиографическая запись. Библиографическое описание».

Пример описания математической модели и используемых численных методов по теме учебного проекта: "Математическое моделирование движения двухатомной молекулы"

Постановка задачи и математическая модель

B качестве модели двухатомной молекулы можно взять систему из двух материальных точек M_1 и M_2 массы m_1 и m_2 , упруго связанных между собой. Сила взаимодействия точек равна $F=-c(r-r_0)$, где r — расстояние между точками, c=const, а r_0 соответствует положению, в котором упругая сила равна нулю.

Функция Лагранжа механической системы равна:

$$L(\mathbf{q},\dot{\mathbf{q}},t)=T-U$$
,

где $\mathbf{q} = (q_1, ..., q_n)$ — обобщенные координаты; $\dot{\mathbf{q}} = (\dot{q}_1, ..., \dot{q}_n)$ — обобщенные скорости; n — число степеней свободы системы; T — кинетическая энергия; U — потенциальная энергия. Уравнениями движения системы являются уравнения Эйлера-Лагранжа, которые имеют вид:

$$L_{q_i} - \frac{d}{dt} L_{\dot{q}_i} = 0, \quad i = 1, ..., n.$$

B качестве обобщенных координат для двухатомной молекулы можно выбрать координаты центра тяжести (x, y, z), расстояние между точками r и сферические углы θ и φ (широта и долгота), определяющие направление прямой, соединяющей точки.

Потенциальная энергия упругой деформации равна:

$$U = \frac{c(r - r_0)^2}{2}.$$

Кинетическая энергия системы равна сумме кинетической энергии T' движения системы как целого и кинетической энергии T_0 в системе отсчета, в которой центр тяжести покоится. Энергия T' равна:

$$T' = \frac{m_1 + m_2}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right).$$

Центр тяжести M делит отрезок $\overline{M_1M_2}$ в отношении m_2/m_1 , т.е.

$$\frac{M_1M}{MM_2} = \frac{m_2}{m_1}, \qquad M_1M = \frac{m_2}{m_1}MM_2.$$

Учитывая, что $M_1M + MM_2 = r$

$$\frac{m_2}{m_1}MM_2 + MM_2 = r,$$
 $\frac{m_1 + m_2}{m_1}MM_2 = r,$ $MM_2 = \frac{m_1}{m_1 + m_2}r.$

Аналогично

$$M_1 M = \frac{m_2}{m_1 + m_2} r.$$

В системе отсчета, в которой центр тяжести покоится и является началом координат, можно ввести сферические углы θ , φ . Связь между прямоугольными декартовыми координатами точек (x_1, y_1, z_1) и (x_2, y_2, z_2) и обобщенными координатами r, θ , φ выражается формулами:

$$\begin{cases} x_1 = \frac{m_2}{m_1 + m_2} r \cos \varphi \sin \theta \\ y_1 = \frac{m_2}{m_1 + m_2} r \sin \varphi \sin \theta \\ z_1 = \frac{m_2}{m_1 + m_2} r \sin \theta \end{cases}$$

$$\begin{cases} x_2 = -\frac{m_1}{m_1 + m_2} r \cos \varphi \sin \theta \\ y_2 = -\frac{m_1}{m_1 + m_2} r \sin \varphi \sin \theta \\ z_2 = -\frac{m_1}{m_1 + m_2} r \sin \theta \end{cases}$$

Поэтому квадраты элементов дуги для материальных точек M_1 и M_2 равны

$$dl_1^2 = \frac{m_2^2}{(m_1 + m_2)^2} \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\varphi^2 \right),$$

$$dl_2^2 = \frac{m_1^2}{(m_1 + m_2)^2} \left(dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\varphi^2 \right).$$

Следовательно, кинетическая энергия T_0 равна:

$$\begin{split} T_0 &= \frac{m_1 m_2^2}{2 (m_1 + m_2)^2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \, \dot{\phi}^2 \right) + \frac{m_2 m_1^2}{2 (m_1 + m_2)^2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \, \dot{\phi}^2 \right) = \\ &= \frac{m_1 m_2^2 + m_2 m_2^2}{2 (m_1 + m_2)^2} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \, \dot{\phi}^2 \right) = \frac{m_1 m_2}{2 (m_1 + m_2)} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \, \dot{\phi}^2 \right) \end{split}$$

В итоге функция Лагранжа равна:

$$L = \frac{m_1 + m_2}{2} \left(\dot{x}^2 + \dot{y}^2 + \dot{z}^2 \right) + \frac{m_1 m_2}{2(m_1 + m_2)} \left(\dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \sin^2 \theta \, \dot{\varphi}^2 \right) - \frac{c(r - r_0)^2}{2}.$$

Поэтому уравнения движения системы имеют вид:

$$\ddot{x} = 0, \qquad \ddot{y} = 0, \qquad \ddot{z} = 0,$$

$$\ddot{r} - r\dot{\theta}^{2} - r\sin^{2}\theta \,\dot{\varphi}^{2} + \frac{c(m_{1} + m_{2})}{m_{1}m_{2}}(r - r_{0}) = 0,$$

$$r^{2}\ddot{\theta} + 2r\dot{r}\dot{\theta} - r^{2}\sin\theta\cos\theta \,\dot{\varphi}^{2} = 0,$$

$$r^{2}\sin^{2}\theta \,\dot{\varphi} + 2r\dot{r}\sin^{2}\theta \,\dot{\varphi} + r^{2}\sin2\theta \,\dot{\theta} \,\dot{\varphi} = 0.$$

Численные методы

Полученная система уравнений движения системы представляет собой систему из шести обыкновенных дифференциальных уравнений второго порядка. При помощи замены переменных $q_{i+6}=\dot{q}_i\;(i=1,\ldots,6)$, где $q_1=x,\;q_2=y,\;q_3=z,\;q_4=r,\;q_5=\theta,\;q_6=\phi$, данную систему можно преобразовать к системе из двенадцати ОДУ первого порядка, которую кратко можно записать в виде:

$$\dot{q}_i = f_i(\mathbf{q}), \qquad i = 1, ..., 12, \qquad \mathbf{q} = (q_1, ..., q_{12}).$$

Для численного решения данной системы будет использован метод Рунге-Кутта второго порядка точности.

Пусть h — заданный шаг по времени. Значения вектора неизвестных ${\bf q}$ на n-й момент времени обозначаются как ${\bf q}^{(n)}$. Считается, что в момент времени t=0 известны начальные значения ${\bf q}^{(0)}$ — это соответствует заданию начальных значений координат и скоростей. Переход с n-го момента времени на (n+1)-й производится по двучленной схеме Рунге-Кутта:

$$q_i^{(n+1)} = q_i^{(n)} + \frac{h}{2} \Big[f_i \Big(\mathbf{q}^{(n)} \Big) + f_i \Big(\mathbf{q}^{(n)} + h \mathbf{f}^{(n)} \Big) \Big], \qquad i = 1, ..., 12,$$
 где вектор $\mathbf{f}^{(n)} = \Big(f_1 \Big(\mathbf{q}^{(n)} \Big), ..., f_{12} \Big(\mathbf{q}^{(n)} \Big) \Big).$

Для сходимости метода Рунге-Кутта имеет место следующая теорема: если функции f_i непрерывны и ограничены вместе со своими частными производными второго порядка включительно, то решение, полученное по двучленной схеме Рунге-Кутта, равномерно сходится к точному решению с погрешностью $O(h^2)$, т.е. метод имеет второй порядок точности.

Примеры тем учебного научно-исследовательского проекта:

- 1. Математическое моделирование движения двухатомной молекулы.
- 2. Математическое моделирование движения материальной точки на сферической поверхности в равномерно вращающейся системе отсчета.
- 4. Математическое моделирование движения материальной точки в центральном поле тяжести (задача Кеплера).
- 5. Математическое моделирование движения линейной трехатомной симметричной молекулы.
- 6. Математическое моделирование движения заряженной релятивистской частицы в постоянном однородном электрическом поле.
- 7. Математическое моделирование движения заряженной релятивистской частицы в постоянном однородном магнитном поле.

Этап: проведение промежуточной аттестации по дисциплине за седьмой семестр (зачет)

Задание для показателя оценивания дескриптора «Знает»			Вид задания	
Сформулируйте	развернутые	ответы	на следующие	- теоретический
теоретические	вопросы	(npu	необходимости	
продемонстрируйте вывод уравнений и доказательства				

теорем):

- 1. Что называется математической моделью?
- 2. Определение и назначение моделирования.
- 3. Классификация моделей.
- 4. Основные этапы построения математических моделей.
- 5. Математическая постановка задачи моделирования.
- 6. Получение моделей из фундаментальных законов природы и законов сохранения. Примеры.
- 7. Вариационные принципы как основа построения моделей.
- 8. Универсальность математических моделей. Адекватность модели.
- 9. Основные этапы научно-исследовательской работы по математическому моделированию.
- 10. Основные экспериментальные факты, лежащие в основе классической механики.
- 11. Обобщенные координаты и скорости. Конфигурационное пространство.
- 12. Принцип наименьшего действия. Уравнение Эйлера-Лагранжа.
- 13. Основные свойства функции Лагранжа.
- 14. Функция Лагранжа свободной материальной точки.
- 15. Связи и их классификация.
- 16. Функция Лагранжа системы материальных точек
- 17. Закон сохранения энергии.
- 18. Закон сохранения импульса.
- 18. Закон сохранения момента.
- 19. Одномерное движение.
- 20. Движение в центральном поле. Задача Кеплера.
- 21. Движение в неинерциальной системе отсчета.
- 22. Функция Гамильтона. Уравнения Гамильтона.
- 23. Скобки Пуассона.
- 24. Свободные малые колебания, гармонический осцилятор.
- 25. Вынужденные колебания.
- 26. Затухающие колебания.
- 27. Вынужденные колебания при наличии трения.
- 28. Угловая скорость.
- 29. Тензор инерции.
- 30. Момент импульса.

- 21. Уравнения движения твердого тела.
- 31. Сформулируйте принцип относительности Эйнштейна.
- 32. Дайте определения понятий: событие, мировая линия, интервал между событиями.
- 33. Запишите формулы преобразования Лоренца.
- 34. Как связаны между собой напряженности электрического и магнитного полей и 4-потенциал?
- 35. Дайте определение тензора второго ранга.
- 36. Запишите метрику в пространстве Минковского. Как связаны ко- и контравариантные компоненты тензоров в пространстве Минковского.
- 37. Запишите определение тензора электромагнитного поля. Запишите ко- и контравариантные компоненты тензора электромагнитного поля через напряженности электрического и магнитного полей.
- 38. Запишите уравнения Максвелла в дифференциальной форме.
- 39. Запишите уравнения Максвелла в интегральной форме.

Задание для показателя оценивания дескриптора «Умеет», «Владеет»	Вид задания
Практические задания (задачи) о построении	- практический
математических моделей физических процессов в рамках	•
классической механики, электродинамики и механики	
сплошных сред и нахождении соответствующих точных	
решений.	
Примеры практических заданий:	
1. Построить математическую модель свободно падающего тела,	
учитывающую вращение Земли.	
2. Построить математическую модель стационарного магнитного	
поля в вакууме вне шара радиуса R, пренебрегая токами	
смещения.	
3. Построить математическую модель естественной конвекции в квадратной полости с изотермическими горизонтальными и	
адиабатическими вертикальными стенками.	
4. Определить закон движения вынужденных одномерных	
колебаний под действием силы $F(t)$:	
$F = F_0 e^{-\alpha t}, \ F_0, \alpha - const.$	
5. Найти напряженность электростатического поля в вакууме в	

сферическом слое, считая, что на границах слоя задан скалярный	
потенциал.	

Этап: проведение промежуточной аттестации по дисциплине за восьмой семестр (экзамен)

Задание для показателя оценивания дескриптора «Знает»	Вид задания
Сформулируйте развернутые ответы на следующие	- теоретический
теоретические вопросы (при необходимости	
продемонстрируйте вывод уравнений и доказательства	
теорем):	
1. Понятие сплошной среды (континуума).	
2. Подход Лагранжа к описанию движения сплошной среды. Закон движения континуума в лагранжевом описании.	
3. Подход Эйлера к описанию сплошной среды.	
4. Субстанциональная (индивидуальная), частная (локальная) производные по времени и конвективная производная (в подходе Эйлера).	
5. Тензор деформаций	
6. Тензор скоростей деформаций.	
7. Тензор напряжений	
8. Уравнение неразрывности.	
9. Интегральное уравнение движения сплошной среды.	
10. Дифференциальное уравнение движения сплошной среды.	
11. Дифференциальное уравнение сохранения внутренней энергии.	
12. Закон теплопроводности Фурье.	
13. Уравнение переноса тепла в изотропной жидкости.	
14. Идеальная жидкость. Уравнение Эйлера.	
15. Уравнение Бернулли для несжимаемой жидкости в поле тяжести.	
16. Уравнение движения вязкой несжимаемой жидкости (уравнение Навье-Стокса).	
17. Начальные и граничные условия в задачах МСС.	
18. Естественная конвекция.	

Задание для показателя оценивания дескриптора «Умеет», «Владеет»	Вид задания
Практические задания (задачи) о построении	- практический

математических моделей физических процессов в рамках классической механики, электродинамики и механики сплошных сред и нахождении соответствующих точных решений.

Примеры практических заданий:

1. Построить математическую модель стационарного течения вязкой несжимаемой жидкости между двумя параллельными плоскостями при условии, что одна покоиться, а вторая движется с постоянной скоростью. Определить скорость стационарного течения.

2

Задано поле перемещений $u^1=\xi^1+a\xi^2,\ u^2=\xi^2+a\xi^3,\ u=\xi^3+a\xi^1$ в сопутствующей системе координат, являющейся в начальный момент времени декартовой прямо-угольной системой координат. Считая деформации малыми, определите поле тензора деформаций.

3.

Определите главные деформации тензора, заданного в декартовой прямоугольной системе координат матрицей

$$\left(\left(\varepsilon_{ij}\right)\right) = \left(\left(\begin{array}{ccc} 1 & 3 & -2 \\ 3 & 1 & -2 \\ -2 & -2 & 6 \end{array}\right)\right).$$

4.

Разложите тензор деформаций $(\epsilon_{ij}) = \begin{pmatrix} 12 & 4 & 0 \\ 4 & 9 & -2 \\ 0 & -2 & 3 \end{pmatrix}$

на шаровую и девиаторную части. Вычислите интенсивности исходного тензора и девиатора деформаций.

5.

Тензор напряжений $(\sigma) = \sigma_{ij} r^i r^j$ в точке сплошной среды задан матрицей $(\sigma_{ij}) = (\sigma_{ij} r^i r^j)$ в точке сплошной среды. Определи-

те вектор полного напряжения σ_n в данной точке на площадке, ориентация которой задается единичным вектором нормали $\boldsymbol{n}=n^k\boldsymbol{r}_k=\frac{2}{3}\,\boldsymbol{r}_1-\frac{2}{3}\,\boldsymbol{r}_2+\frac{1}{3}\boldsymbol{r}_3.$

- 6 Вывести уравнение одномерного течения идеальной жидкости в переменных Лагранжа.
- 7. Записать уравнение неразрывности в цилиндрических координатах.
- 8. Определить форму поверхности несжимаемой жидкости в

поле тяжести в цилиндрическом сосуде, вращающемся вокруг своей оси с постоянной угловой скоростью.

- 9. Шар движется в несжимаемой идеальной жидкости. Определить потенциальное течение жидкости вокруг шара.
- Бесконечный цилиндр движется в несжимаемой идеальной жидкости, перпендикулярно своей оси.
 Определить потенциальное течение жидкости вокруг цилиндра.
- 11. Построить математическую модель стационарного течения вязкой несжимаемой жидкости между двумя покоящимися параллельными плоскостями при заданном перепаде давления. Определить скорость стационарного течения.
- 12. Построить математическую модель стационарного течения вязкой несжимаемой жидкости внутри неподвижной трубы круглого сечения при заданном перепаде давления. Определить скорость стационарного течения.