Документ подписаТестовоек задайне для диагностического тестирования по дисциплине:

Информация о владельце:

ФИО: Косенок Сергей Михайлович УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Должность: ректор

Дата подписания: 06.06.2024 06:43:52

5 семестр

Уникалы	ный программный ключ:	1
e3a68f3	ада 62,674b54f4998099d3d6bfdcf836	01.03.02 Прикладная математика и информатика
	подготовки	
	Направленность (профиль)	«Прикладная математика и информатика»
	Форма обучения	очная
	Кафедра-разработчик	Прикладной математики
	Выпускающая кафедра	Прикладной математики

Проверяемая компетенция	Задание	Варианты ответов	Тип сложност и вопроса	Кол-во баллов за правил ьный ответ
ОПК-3	1. Определите тип уравнения $u_{xy} = \Phi(u_x, u_y, u, x, y)$	а) параболический б) гиперболический в) эллиптический	Низкий	2
ОПК-3	2. Определите тип уравнения $u_{xx} + u_{yy} = \Phi(u_x, u_y, u, x, y)$	а) параболический б) гиперболический в) эллиптический	Низкий	2
ОПК-3	3. Определите тип уравнения $u_{xx} - u_{yy} = \Phi(u_x, u_y, u, x, y)$	а) параболический б) гиперболический в) эллиптический	Низкий	2
ОПК-3	4. Определите тип уравнения $u_{xx} = \Phi(u_x, u_y, u, x, y)$	а) параболический б) гиперболический в) эллиптический	Низкий	2
ОПК-3	5. Определите тип уравнения $\Delta u = f(x, y, z)$	а) параболический б) гиперболический в) эллиптический	Низкий	2
ОПК-3	6. При каких условиях на α и β соотношение $\left.\left(\alpha u + \beta \frac{\partial u}{\partial n}\right)\right _{\partial D} = f(P) \qquad -$ определяет граничные условия первого рода?	a) $\alpha \equiv 0$ и $\beta \equiv 1$; 6) $\alpha \equiv 1$ и $\beta \equiv 0$; B) $\alpha \not\equiv 0$ и $\beta \not\equiv 0$;	Средний	5
ОПК-3	7. При каких условиях на α и β соотношение $\left(\alpha u + \beta \frac{\partial u}{\partial n}\right)\Big _{\partial D} = f(P)$ — определяет граничные условия второго рода?	a) $\alpha \equiv 0$ и $\beta \equiv 1$; б) $\alpha \equiv 1$ и $\beta \equiv 0$; в) $\alpha \not\equiv 0$ и $\beta \not\equiv 0$;	Средний	5
ОПК-3	8. При каких условиях на α и β соотношение $\left.\left(\alpha u + \beta \frac{\partial u}{\partial n}\right)\right _{\partial D} = f(P) \qquad -$ определяет граничные условия третьего рода?	a) $\alpha \equiv 0$ и $\beta \equiv 1$; б) $\alpha \equiv 1$ и $\beta \equiv 0$; в) $\alpha \not\equiv 0$ и $\beta \not\equiv 0$;	Средний	5
ОПК-3		a) $u(x, 0) = \varphi(x);$ b) $u_t(x, 0) = \varphi(x),$	Средний	5

		B) $u(x,0) = \varphi(x)$, $u_t(x,0) = \psi(x)$;		
ОПК-3	10. Укажите вид начальных условий для уравнения $u_t = a^2 u_{xx} + f(x,t)$:	a) $u(x,0) = \varphi(x)$;	Средний	5
ОПК-3	11. Что требуется найти в задаче Штурма-Лиувилля: $ \begin{cases} X'' + \lambda X = 0 \\ X(0) = X(l) = 0 \end{cases} $	а) множество всех нетривиальных решений X и определить длину отрезка l на котором эти решения существуют, при фиксированном значении параметра λ ;	Средний	5
		б) значение параметра λ при котором решение X единственно и найти это решение;		
		в) множество всех значений параметра λ при которых существуют нетривиальные решения, а также само множество этих решений.		
ОПК-3	12. Найдите значения задачи Штурма- Лиувилля: $X'' + \lambda X = 0$ $X'' + \lambda X = 0$ $X'' + X $	a) $\lambda_n = \left(\frac{\pi n}{l}\right)$, $n = 1,2,$; 6) $\lambda_n = \left(\frac{\pi l}{n}\right)^2$, $n = 1,2,$; B) $\lambda_n = \left(\frac{\pi n}{l}\right)^2$, $n = 1,2,$;	Средний	5
ОПК-3	13. Найдите собственные значения задачи Штурма-Лиувилля:	a) $X_n = sin\left(\frac{\pi nx}{l}\right)$, $n = 1, 2, \dots$; 6) $X_n = cos\left(\frac{\pi nx}{l}\right)$, $n = 1, 2, \dots$; B) $X_n = sh\left(\frac{\pi nx}{l}\right)$, $n = 1, 2, \dots$;	Средний	5
ОПК-3	14. Каким условиям должна удовлетворять корректно поставленная задача уравнений математической физики?	а) Решение существует, единственно и устойчиво относительно дополнительных условий. б) Решение единственно и устойчиво относительно дополнительных условий.	Средний	5

	<u> </u>		-	
		в) Решение		
		существует и		
		единственно.		
ОПК-3	15. Что означает термин	а) Решение	Средний	5
	«устойчивость решения» для	однозначно		
	задачи уравнений	определяется		
	математической физики?	условиями задачи		
		(т.е. заданием начальных и		
		граничных условий,		
		свободного члена,		
		коэффициентов и		
		т. д.).		
		б) Решение должно		
		непрерывно зависеть		
		от исходных данных		
		задачи (начальных и		
		граничных условий, свободного члена,		
		коэффициентов и		
		т. д.).		
		в) Решение с		
		течением времени		
		переходит в		
		установившийся		
		режим, т.е. стремится		
		к некоторому		
		стационарному состоянию.		
ОПК-3	16. Определите тип уравнения		Высокий	8
	$u_{xx} + 4u_{xy} + u_{xy} = 1$			
ОПК-3	17. Запишите решение		Высокий	8
	характеристического уравнения			
	для уравнения (*):			
	$u_{xx} + 2u_{xy} + u_{xy} = 1. (*)$			
ОПК-3	18. Запишите общее решение		Высокий	8
001/ 3	уравнения $u_{xy} = 0$.		Drago	0
ОПК-3	19. Найдите решение начально-краевой задачи:		Высокий	8
	краевой задачи: $u_t = u_{xx}; \ 0 < x < \pi, \ t > 0$			
	$u\Big _{x=0} = 0$, $u\Big _{x=\pi} = 0$, $u\Big _{t=0} = \sin x$			
ОПК-3	20. Найдите решение задачи		Высокий	8
J J	Коши:		251¢OKIIII	3
	$u_t = u_{xx} + t; -\infty < x < +\infty, t > 0$			
	$\left u \right _{t=0} = 1$			

Тестовое задание для диагностического тестирования по дисциплине:

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

6 семестр

Код, направление	01.03.02 Прикладная математика и информатика
подготовки	
Направленность (профиль)	«Прикладная математика и информатика»
Форма обучения	очная
Кафедра-разработчик	Прикладной математики
Выпускающая кафедра	Прикладной математики

Проверяемая компетенция	Задание	Варианты ответов	Тип сложност и вопроса	Кол -во бал лов за пра вил ьны й отве т
ОПК-3	1. Укажите фундаментальное решение уравнения Лапласа в трехмерном пространстве (r – модуль радиус – вектора точки пространства):	a) $\frac{1}{r}$ 6) $\frac{1}{r^2}$ B) $\frac{1}{r^3}$	Низкий	2
ОПК-3	2. Укажите фундаментальное решение уравнения Лапласа на плоскости $(r - \text{модуль радиус} - \text{вектора точки плоскости})$:	a) $\frac{1}{r^2}$ 6) $ln \frac{1}{r}$ B) e^{-r}	Низкий	2
ОПК-3	3. Продолжите утверждение, так чтобы оно было верным «Гармоническая в некоторой области пространства функция	а) является решением уравнения $\Delta u = u_{tt}$ в этой области» б) является решением уравнения $\Delta u = u_t$ в этой области». в) является решением уравнения $\Delta u = 0$ в этой области».	Низкий	2
ОПК-3	4. Выберите верное утверждение о свойствах гармонических функций.	а) Функция, гармоническая в области, неотрицательна в ней. б) Функция, гармоническая в области, бесконечно дифференцируема в ней. в) Функция, гармоническая в области, ограничена в ней.	Низкий	2
ОПК-3	5. Укажите формулу решения следующей задачи Коши на прямой: $u_{tt} = a^2 u_{xx}$, $u(x,0) = \varphi(x)$, $u_t(x,0) = \psi(x)$.	a) $u(x,t) = 0.5(\varphi(x+at) - \varphi(x-at)) + (1/2a) \int_{x-at}^{x+at} \psi(\alpha) d\alpha$	Низкий	2

			5) () 2=(()		
$ (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ n) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ n) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x+\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x-\alpha t) + \varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ a) u(x,t) = 0.5 (\varphi(x-\alpha t)) - (1/2a) \int_{\chi=a}^{\chi+at} \psi(\alpha) d\alpha $ $ b) u(x,t) = 0.5 (\theta(x) =$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$(1/2a)\int_{x-at}^{x+at} \psi(\alpha) da$		
ОПК-3			$B) u(x,t) = 0.5(\varphi(x+at) +$		
ОПК-3 6. Кык нужно продолжить начальные условия на вею прямую для решения задачи о колебаниях полупрямой с граничими условиями $u_x(0,t) = 0.0$ 0.7 7. Укажите вид собственных частот колебаний струны длиной $t = t = t = t = t = t = t = t = t = t $			$\varphi(x-at)$) –		
ОПК-3 6. Кык нужно продолжить начальные условия на вею прямую для решения задачи о колебаниях полупрямой с граничими условиями $u_x(0,t) = 0.0$ 0.7 7. Укажите вид собственных частот колебаний струны длиной $t = t = t = t = t = t = t = t = t = t $			$(1/2a)\int_{x-at}^{x+at} \psi(\alpha) d\alpha$		
аддачи о колебаниях полупрямой с граничными условиями $u_X(0,t) = 0$? ОПК-3 7. Укажите вид собственных частот колебаний струны длиной t с закрепленными концами (уравнение колебаний $u_{tt} = a^2 u_{xx}$). ОПК-3 8. Укажите формулу вычисления колффициентов b_p ряда Фурье $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{t}$ в промежутке $0 \le x \le t$. ОПК-3 9. Продолжите следующее утверждение, так что бы опо было верными ченение $0 \le x \le t$. В) $b_n = \frac{1}{t} \int_0^t f(x) \sin \frac{n\pi x}{t} dx$; Средний 5 ОПК-3 9. Продолжите следующее утверждение, так что бы опо было верными ченерерывная в замкнутой области $0 \le x \le t$. $0 \le t \le T$ уловлетворяет однородному уравнению теплопроводности в точках области $0 \le x \le t$. $0 \le t \le T$ уловлетворяет однородному уравнению теплопроводности в точках области $0 \le x \le t$. $0 \le t \le T$ достигаются яли в начальный момент времени, или во внутренных точках промежутка $0 \le x \le t$. $0 \le x$	ОПК-3			Средний	5
OP? в) аналитически; в) аналитически; серина и проводной и струны длиной l с закрепленными конщами (уравнение колебаний: $u_{tt} = a^2 u_{xx}$). в) $a_{n} = \frac{\pi al}{a}$. средний 5 ОПК-3 8. Укажите формулу вычисления коэффициентов b_n ряда фурье $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi a}{l}$ в промежутке $0 \le x \le l$. a) $a_n = \frac{\pi al}{a}$. b) $a_n = \frac{\pi al}{a}$. c) $a_n = \frac{\pi al}{a}$. d) $a_n = \frac{\pi al}{a}$. c) $a_n = \frac{\pi al}{a}$. d) $a_n = \frac{\pi al}{a}$. e) $a_n = \frac{\pi al}$		задачи о колебаниях полупрямой с	б) нечетно;		
ОПК-3 7. Укажите вид оботвенных частот колбаний: $u_{tt} = a^2 u_{xx}$). 8. Укажите формулу вычисления коэффициситов b_n ряда Фуркс $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{t}$ в промежутке $0 \le x \le t$. ОПК-3 9. Продолжите следующее утверждение, так что бы оно было верным. «Если функция $u(x,t)$, определенная и исперывния в замкнутой области $0 \le x \le t$. $0 \le t \le T$ удоваетворяет однородному уравнению теплопроводности в точках области $0 < x < t$, $0 < t \le T$, то» ОПК-3 10. Укажите фундаментальное ураненняя и примой. $0 \le t \le t \le t$ удоваетворяет однородному уравнению теплопроводности на прямой. $0 \le t \le t \le t$ од $t \le t \le t \le t$ од $t \le t \le t \le t$ удоваетворяет однородному уравнению теплопроводности в $t \le t \le t$ од $t \le t \le t$ од $t \le t \le t \le t$ од $t \le t \le t$ од			в) аналитически;		
опк-з варелиенными концами (уравнение колебаний: $u_{tt} = a^2 u_{xx}$). Попк-з в. Укажите формулу вычисления коффициентов b_1 ряда Фурье $f(x) = \sum_{n=1}^{\infty} l_n \sin \frac{n\pi x}{t}$ в промежутке $0 \le x \le t$. Попк-з продолжите следующее утверждение, так что бы оно было верным. «Если функция $u(x,t)$, определенная и неперерывная в замкнутой области $0 \le x \le t$, $0 \le t \le T$ удовьтеворяет однородному уравнению теплопроводности в точках области $0 < x < t$, $0 < t \le T$, то» Попк-з приним области $0 < x < t$, $0 < t \le T$, то» Попк-з приним области $0 < x < t$, $0 < t \le T$, то» Попк-з приним области $0 < x < t$, $0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t \le T$, то» Попк-з приним области $0 < x < t < 0 < t < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < x < t < 0 < t < T$, то» Попк-з приним области $0 < t < 0 < t < T$, то	ОПК-3		a) $\omega_n = \frac{\pi n l}{a}$;	Средний	5
колебаний: $u_{tt} = a^2 u_{xx}$). 8) $\omega_n = \frac{\pi a_n}{r}$; в) $\omega_n = \frac{\pi a_n}{r}$; 8) $\omega_n = \frac{\pi a_n}{r}$; 9) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac{\pi a_n}{r}$; 17) $\omega_n = \frac{\pi a_n}{r}$; 18) $\omega_n = \frac{\pi a_n}{r}$; 19) $\omega_n = \frac{\pi a_n}{r}$; 10) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 11) $\omega_n = \frac{\pi a_n}{r}$; 12) $\omega_n = \frac{\pi a_n}{r}$; 13) $\omega_n = \frac{\pi a_n}{r}$; 14) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 15) $\omega_n = \frac{\pi a_n}{r}$; 16) $\omega_n = \frac$					
ОПК-3 8. Укажите формулу вычисления коффициентов b_{+} ряда Фурье $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi n x}{t}$ в промежутке $0 \le x \le t$. ОПК-3 9. Продолжите следующе аутверждение, так что бы оно быль верным. «Если функция $u(x,t)$, определенная и непрерывная в замкнутой области $0 \le x \le t$. $0 \le t \le T$ удовдетворяет однороднооту уравнению теплопроводности в точках области $0 < x < t$. $0 < t \le T$, то» ОПК-3 10. Укажите фундаментальное упвремение уравнения теплопроводности на прямой. ОПК-3 11. Выберите правильный вариант туперждения о свойствах гармонических функций. «Если $u - $ функций. «Если $u - $ функций. «Если $u - $ функций. «Сбели $u - $ функций. «Бели		¥ .	$6) \omega_n = \frac{\pi a l}{n};$		
ОПК-3 8. Укажите формулу вычисления коффициентов b_{+} ряда Фурье $f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi n x}{t}$ в промежутке $0 \le x \le t$. ОПК-3 9. Продолжите следующе аутверждение, так что бы оно быль верным. «Если функция $u(x,t)$, определенная и непрерывная в замкнутой области $0 \le x \le t$. $0 \le t \le T$ удовдетворяет однороднооту уравнению теплопроводности в точках области $0 < x < t$. $0 < t \le T$, то» ОПК-3 10. Укажите фундаментальное упвремение уравнения теплопроводности на прямой. ОПК-3 11. Выберите правильный вариант туперждения о свойствах гармонических функций. «Если $u - $ функций. «Если $u - $ функций. «Если $u - $ функций. «Сбели $u - $ функций. «Бели			B) $\omega_n = \frac{\pi a n}{l}$;		
	ОПК-3		a) $b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{\pi nx}{l} dx;$	Средний	5
ОПК-3 9. Продолжите следующее утверждение, так что бы оно было верным. «Если функция $u(x,t)$, определенная и непрерывная в замкнутой области $0 \le x \le l$, $0 \le t \le T$ удовлетворяет однородному уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» 6) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или во внутренних точках промежутка $0 < x < l$, $0 < t \le T$, то» 8) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или во внутренних точках промежутка $0 \le x \le l$.» 8) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x = 0$, или $x = l$.» 10. Укажите фундаментальное решение уравнения теплопроводности на прямой. 3) $G(x,\xi;t) = \frac{1}{2\sqrt{\pi}a^2t}e^{-\frac{(x-\xi)^2}{4a^2t}}$; Средний теплопроводности на прямой. 4) $G(x,\xi;t) = \frac{1}{2\sqrt{\pi}a^2t}e^{-\frac{aa^2t}{4a^2t}}$; в) $G(x,\xi;t) = \frac{1}{2\sqrt{\pi}a^2t}e^{-\frac{aa^2t}{(x-\xi)^2}}$; амкнутая поверхность, целиком лежащая в области D »; области D , то 6) $G(x,\xi;t) = \frac{1}{2\sqrt{\pi}a^2t}e^{-\frac{aa^2t}{(x-\xi)^2}}$; замкнутая поверхность, целиком лежащая в области D »; области D »; области D »; области D » области		$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{\pi n x}{l}$ в промежутке	$b_n = \frac{l}{2} \int_0^l f(x) \sin \frac{\pi n x}{l} dx;$		
утверждение, так что бы оно было верным. «Если функция $u(x,t)$, определенная и непрерывная в замкнутой области $0 \le x \le l$, $0 \le t \le T$ удовлетворяет однородному уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» ОПК-3 10. Укажите фундаментальное решение уравнения теплопроводности на прямой. 11. Выберите правильный вариант утверждения о свойствах гармонических функции, $x < t < t < t < t > t < t < t < t < t < t$			B) $b_n = \frac{1}{l} \int_0^l f(x) \sin \frac{\pi nx}{l} dx;$		
верным. «Если функция $u(x,t)$, определенная и непрерывная в замкнутой области $0 \le x \le l$, $0 \le t \le T$ удовлетворяет однородному уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» (5) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или во внутренних точках промежутка $0 \le x \le l$.» в) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x = 0$, или $x = l$.» в) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x = 0$, или $x = l$.» в) a a a b a b a b b a b b a b	ОПК-3	1	, , , , , , , , , , , , , , , , , , ,	Средний	5
и непрерывная в замкнутой области $0 \le x \le l$, $0 \le t \le T$ удовлетворяет однородному уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» В точках области $0 < x < l$, $0 < t \le T$, то» ОПК-3 10. Укажите фундаментальное решение уравнения теплопроводности на прямой. ОПК-3 11. Выберите правильный вариант утверждения о свойствах гармонических функций. «Если $u = \phi$ ункций. «Если $u = \phi$ ункций. «Если $u = \phi$ ункций. «Спи $u = \phi$ ункций, гармоническая в области $u = \phi$ ункция, гармоническая в области $u = \phi$ ункция $u = \phi$ ункций $u = \phi$ ункция u		* *	**		
о ≤ x ≤ l, 0 ≤ t ≤ T удовлетворяет однородному уравнению теплопроводности в точках области 0 < x < l , 0 < t ≤ T , то» о			-		
удовлетворяет однородному уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» В максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или во внутренних точках промежутка $0 \le x \le l$.» В максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x = 0$, или $x = l$.» В максимальное уравнения теплопроводности на прямой.		· · · · · · · · · · · · · · · · ·	-		
уравнению теплопроводности в точках области $0 < x < l$, $0 < t \le T$, то» ОПК-3		1	*		
опк-з 11. Выберите правильный вариант утверждения о свойствах гармонических функций. «Если u — функция, гармоническая в области D , то S момент времени, или во внугренних точках промежутка $0 \le x \le l$.» в) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x = 0$, или $x = l$.» S а) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{(x-\xi)^2}{4a^2 t}};$ Средний S а) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{(x-\xi)^2}{4a^2 t}};$ в) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ в) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ в) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{4a^2 t}{(x-\xi)^2}};$ $G(x$					
$0 < x < l , 0 < t \le T, \text{ то } \dots > \\ $					
в) максимальное и минимальное значения функции $u(x,t)$ достигаются или в начальный момент времени, или в точках границы $x=0$, или $x=l$.» ОПК-3 10. Укажите фундаментальное решение уравнения теплопроводности на прямой. а) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{\frac{(x-\xi)^2}{4a^2t}};$ Б) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{\frac{(x-\xi)^2}{4a^2t}};$ в) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{\frac{a^2t}{(x-\xi)^2}};$ а) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{\frac{a^2t}{(x-\xi)^2}};$ $G(x,\xi;t)=\frac{1}$			-		
опк-з 10. Укажите фундаментальное решение уравнения из в точках границы $x=0$, или $x=l$.» а) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{-\frac{(x-\xi)^2}{4a^2t}};$ б) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{-\frac{(x-\xi)^2}{4a^2t}};$ в) $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{-\frac{4a^2t}{(x-\xi)^2}};$ а), $\iint_S udS=0$ где S – любая замкнутая поверхность, целиком лежащая в области D , то $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{-\frac{4a^2t}{(x-\xi)^2}};$ об $G(x,\xi;t)=\frac{1}{2\sqrt{\pi a^2t}}e^{-\frac{4a^2t}{(x-\xi)^2}};$ $G(x,\xi;t)=$			$0 \le x \le l.$ »		
ОПК-3			*		
ОПК-3 ПО. Укажите фундаментальное решение уравнения теплопроводности на прямой. ПОК-3 ПО					
опк-3					
ОПК-3			_		
	ОПК-3	решение уравнения	_	Средний	5
ОПК-3 11. Выберите правильный вариант утверждения о свойствах гармонических функций. «Если u — функция, гармоническая в области D , то 31. Выберите правильный вариант утверждения о свойствах гармонических функций. Замкнутая поверхность, целиком лежащая в области D »; 32. U		теплопроводности на прямои.	6) $G(x, \xi; t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{(x-\xi)^2}{4a^2 t}};$		
утверждения о свойствах гармонических функций. «Если u — функция, гармоническая в области D , то а), $\int_S uds = 0$ где S — любая замкнутая поверхность, целиком лежащая в области D »; б) $\int_S \left(\frac{\partial u}{\partial n}\right) dS \neq 0$, где S — любая замкнутая поверхность, целиком			B) $G(x,\xi;t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{-\frac{4a^2t}{(x-\xi)^2}};$		
«Если u — функция, гармоническая в области D , то 6) $\iint_S \left(\frac{\partial u}{\partial n} \right) dS \neq 0$, где S — любая замкнутая поверхность, целиком	ОПК-3	утверждения о свойствах	а), $\iint_S udS = 0$ где S – любая	Средний	5
б) $\iint_S \left(\frac{\partial u}{\partial n}\right) dS \neq 0$, где S – любая замкнутая поверхность, целиком		«Если u — функция, гармоническая в	¥ .		
		οωιας in <i>D</i> , 10	6) $\iint_{S} \left(\frac{\partial u}{\partial n} \right) dS \neq 0$, где S – любая		
			-		

		(2)		
		в) $\iint_{S} \left(\frac{\partial u}{\partial n} \right) dS = 0$, где S – любая		
		замкнутая поверхность, целиком лежащая в области <i>D</i> »		
ОПК-3	12. Укажите формулу решения следующей задачи Коши на прямой: $u_t = a^2 u_{xx}$, $u(x,0) = \varphi(x)$	a) $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} e^{-\frac{(x-\xi)^2}{4a^2t}} \varphi(\xi) d\xi$	Средний	5
		6) $u(x,t) = 0.5(\varphi(x+at) + \varphi(x-at))$ B) $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \frac{\varphi(\xi)}{ x-\xi } d\xi$		
ОПК-3	13. Выберите правильный вариант утверждения о свойствах гармонических функций.	а) Функция u определенная и непрерывная в замкнутой области \overline{D} , и гармоническая в D , может иметь максимум и минимум только во внутренних точках области D .	Средний	5
		б) Функция u определенная и непрерывная в замкнутой области \overline{D} , и гармоническая в D , достигает своего максимума и минимума на границе области D .		
		в) Функция u определенная и непрерывная в замкнутой области \overline{D} , и гармоническая в D , не может иметь максимум и минимум во внутренних точках области D .		
ОПК-3	14. Выберите правильный вариант утверждения о свойствах гармонических функций.	а) Классическое решение внутренней задачи Дирихле для уравнения Лапласа определено с точностью до произвольного постоянного слагаемого.	Средний	5
		б) Классическое решение внутренней задачи Дирихле для уравнения Лапласа единственно и непрерывно зависит от граничных условий.		
		в) Классическое решение внутренней задачи Дирихле для уравнения Лапласа регулярно на бесконечности.		
ОПК-3	15. Выберите правильный вариант утверждения о свойствах гармонических функций.	а) Если гармонические в области D функции u и v определены u непрерывны в \overline{D} , u если $u > v$ на ∂D , то $u \le v$ в D .	Средний	5
		б) Если гармонические в области D функции u и v определены u непрерывны в \overline{D} , u если $u = v$ на ∂D , то $u > v$ в D .		

ОПК-3	16. Найдите функцию,	в) Если гармонические в области D функции u и v определены u непрерывны в \overline{D} , и если $u \le v$ на ∂D , то $u \le v$ в D .	Высокий	8
	гармоническую в кольце $1 < r < 2$ радиуса R с центром в начале координат и такую, что: $u\big _{r=1} = 1$; $u\big _{r=2} = 2$			
ОПК-3	17. Найдите функцию, гармоническую вне круга радиуса R с центром в начале координат и такую, что: $u\big _{r=R} = \sin \varphi$		Высокий	8
ОПК-3	18. Найдите функцию, гармоническую внутри круга радиуса R с центром в начале координат и такую, что: $\left. \frac{\partial u}{\partial r} \right _{r=R} = \cos \varphi$		Высокий	8
ОПК-3	19. Найдите решение начально-краевой задачи: $u_{tt} = u_{xx}; \ 0 < x < \pi, \ t > 0$ $u\big _{x=0} = 0, \ u\big _{x=\pi} = 0,$ $u\big _{t=0} = \sin x; \ u_t\big _{t=0} = 0$		Высокий	8
ОПК-3	20. Найдите решение задачи Коши: $u_{tt} = u_{xx} + 6$; $-\infty < x < +\infty$, $t > 0$ $u _{t=0} = x^2$; $u_t _{t=0} = 4x$		Высокий	8